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This paper contams a theoretical study of the sample-to-sample fluctuations m transport proper-
ties of phase-coherent, diffusive, quasi-one-dimensional Systems The mam result is a formula for the
vanance of the fluctuations of an arbitrary linear statistic on the transmission eigenvalues [i e , an

observable of the form A = X^=1 f(Tn)} The formula is the analog of the Dyson-Mehta theorem
in the statistical theory of energy levels The analysis is based on an existmg random-matrix theory
for the jomt probabihty distribution of the transmission eigenvalues Tn (n= 1,2, , N ) , and holds
m the \aTge-N limit The variance of the fluctuations is shown to be mdependent of the sample size
or degree of disorder and to have a universal l/β dependence on the symmetry parameter β of the
matnx ensemble It follows that the umversality which was estabhshed in the theory of "universal
conductance fluctuations" is genenc for a whole class of transport properties m mesoscopic conduc-
tors and superconductors A further implication of the analysis is that the correlations between the
transmission eigenvalues are not precisely described by a loganthmic mteraction

I. INTRODUCTION

Universal conductance fluctuations (UCF) is the phe-
nomenon where sample-to-sample fluctuations m the con-
ductance are of order e2/h at zero temperature, mdepen-
dent of the size of the sample or the degree of disorder —
äs long äs the conductor remains m the diffusive trans-
port regime (A diffusive conductor is long compared to
the mean free path, but short compared to the locahza-
tion length ) This umversality Stands out äs one of the
most remarkable results in mesoscopic physics 1

The theory of UCF was ongmally formulated äs a
diagrammatic perturbation theory by Al'tshuler2 and
by Lee and Stone 3 Subsequently, an alternative non-
perturbative approach was developed, based on gen-
eral properties of the statistics of eigenvalues of random
matrices (random Hamiltomans,4 or random scattermg
matnces5"9) The umversality of the conductance fluc-
tuations was shown to ongmate from the universal eigen-
value repulsion in random-matrix ensembles, discovered
long ago m nuclear physics 10~12 The symmetry class of
the ensemble mamfests itself m the universal dependence
of the variance of the conductance on the presence of a
magnetic field or spm-orbit scattermg Random-matrix
theory offers an understandmg of UCF which is both fun-
damental and intuitive

The relationship between the statistics of energy lev-
els measured in nuclear reactions, on the one hand, and
the statistics of conductance fluctuations measured in
transport expenments, on the other hand, is described
in the review article of Stone et al7 In the former prob-
lem it is known that fluctuations in the density of eigen-
values of random Hamiltomans are governed by level re-
pulsion, which depends on the symmetry of the Hamil-
toman ensemble — but is mdependent of the mean level

density13 16 The same holds for the eigenvalues of ran-
dom scattermg matrices (in the so-called circular ensem-
ble of umtary matrices12) However, this estabhshed um-
versality is not directly apphcable to the latter problem
of the statistics of conductance fluctuations, because of
two essential comphcations

The first is that the transmission coefficients (the quan-
tities which determme the conductance) are not the
eigenvalues of the scattermg matnx Instead, the trans-
mission coefficients Tn (n = 1,2, ,7V) are the eigen-
values of the matnx product ttf, where the transmission
matnx t is an N χ N submatrix of the 27V χ IN scatter-
mg matnx of the conductor This first comphcation was
resolved by Muttahb, Pichard, and Stone,6 and by Mello,
Pereyra, and Kumar,8 who (in two different approaches)
determmed the Jacobian of the transformation from the
space of scattermg matrices to the space of transmission
eigenvalues It turns out that the repulsion of the vari-
ables \n = (l — Tn)/Tn (bemg the ratio of reflection and
transmission coefficients) takes the same form äs the re-
pulsion of energy levels En

The second comphcation is that the correlation func-
tion of the \n's is not translationally invariant, due to
the positivity constramt on λ This constramt λ > 0 fol-
lows directly from umtanty of the scattermg matnx In
contrast, the correlation function m the random-matrix
theory of energy levels is translationally invariant over
the energy ränge of interest17 This second comphcation
was clearly identified by Stone et al J but remamed un-
resolved

Because of this technical comphcation, the random-
matrix theory of quantum transport could not be äs well
developed äs its counterpart in nuclear physics In that
field there exists a formula, due to Dyson and Mehta,18

which allows one to compute the vanance of any linear
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statistic on the energy levels [i.e., an observable A =
Ση

 a(En), with α an arbitrary function of energy]. The
Dyson-Mehta formula reads

l l f°°
- — \ d k \ a ( k } \ 2 k ,
P κ Jo

(1.1)

where a(k) = f^°oodEetkEa(E) is the Fourier transform
of a(E). The symmetry parameter β equals l, 2, or
4, depending on whether the Hamiltonian ensemble be-
longs to the orthogonal, unitary, or symplectic symme-
try class.12 Equation (1.1) shows that (1) the variance is
independent of microscopic parameters and (2) the vari-
ance has a universal 1//3 dependence on the symmetry
parameter of the ensemble. No such general result ex-
ists for the variance of transport properties. The lack of
a formula with the same generality äs Eq. (1.1) is be-
ing feit especially now that mesoscopic fluctuations in
transport properties other than the conductance (both
in conductors and in superconductors) have become of
interest. Examples are the critical-current fluctuations
in Josephson junctions,19 conductance fluctuations at
normal-superconductor Interfaces,20 and fluctuations in
the shot-noise power of metals.21

Here we show one can overcome this obstacle towards
the establishment of universality in the random-matrix
theory of quantum transport. Our main result is the
analog of the Dyson-Mehta formula for the variance of a
linear statistic A = Ση f(Tn) on the transmission eigen-
values:

l l f°°
= --^/ dk\F(k)\2ktaiih(Trk). (1.2)

P 7Γ Jo

The function F(k) is defined in terms of the function
/(T) by the transform

/

o

-0
4.
l

(1.3)

The formula (1.2) demonstrates that the universality
which was the hallmark of UCF is generic for a whole
class of transport properties, viz., those which are linear
statistics on the transmission eigenvalues. This general-
ity was anticipated by Imry,5 but could not previously
be established.

The outline of this paper is äs follows. In See. II we
formulate the problem and summarize the results of the
random-matrix theory of Muttalib, Pichard, and Stone,6

on which our analysis is based. We mention the limita-
tions inherent in this approach, to which we will return
later on in the paper (See. VIII). We do not discuss the al-
ternative approaches of Al'tshuler and Shklovskii,4 and of
Mello, Pereyra, and Kumar,8 to which our method is not
applicable. Our method of calculation employs a func-
tional derivative technique, which we introduce in See. II.
In See. III we present an integral equation for the mean
density of transmission eigenvalues, in the limit that the
dimension N of the transmission matrix goes to infin-
ity. The derivation of this equation, along the lines of an
analogous derivation by Dyson,14 is given in Appendix
A. The solution of the integral equation by Meilin trans-
formation is described in See. IV. The solving kernel,

combined with the functional derivative relation of See.
II, directly yields the density-density correlation function
of the transmission eigenvalues in the \arge-N limit. In
See. V we combine the results of the previous sections
to obtain the analog of the Dyson-Mehta formula for the
quantum transport problem (see also Appendix B). This
formula is applied to a variety of transport properties, in
conductors and superconductors, in See. VI. In See. VII
we show that our results agree with the (numerically cal-
culated) large-JV limit of a special exactly solvable model
(the Laguerre ensemble7'22). A comparison with other
theories of mesoscopic fluctuations is given in See. VIII
and Appendix C. We conclude in See. IX. A brief account
of our results has been given in Ref. 23.

II. FORMULATION OF THE PROBLEM

We consider a disordered conductor of length L and
width W at zero temperature. The elastic scattering of
noninteracting electrons at the Fermi level is described
by the unitary scattering matrix (s matrix)

(2.1)

The refiection and transmission matrices r and t are
N χ N matrices, N being the number of propagat-
ing modes at the Fermi energy. The matrix product

i i1 2 2 Hermitian, and hence has real eigenvalues Tn

(n = l, 2, . . . , N). Since t12t[2 = 7"ιι*2ΐ*2ΐΓϊΊ1 fa follows
from unitarity of s), the matrices t12t[2 and i2i4i nave

the same set of eigenvalues. We refer to the Tn's äs the
transmission eigenvalues. Unitarity of s also implies that
0 < Tn < l for all n. We will study transport properties
A of the form

N

(2.2)
n=l

A quantity of the form (2.2) is called a linear statis-
tic on the transmission eigenvalues. The word "linear"
indicates that A does not contain products of different
eigenvalues, but the function /(T) may well depend non-
linearly on T.

Starting point of our analysis is the joint probability
distribution of transmission eigenvalues obtained in the
random-matrix theory of quantum transport.6'7 To make
contact with that theory we adopt the parametrization

T =n- 0 < λ < oo,

and work with a linear statistic on the A's,

N

(2.3)

(2.4)

Since there is a simple one-to-one relationship between
λ and T, we will still refer to the A's äs "transmission
eigenvalues." The distribution of the A's is given by6'7
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Ρ({λη}) = Ζ-1 exp[-ßH({Xn})},

11 λ, — λ,, l -

(2.5)

where Z is such that P is normalized to unity,

/•oo /-c

= / d Ä i · · · /
v/0 v/0

exp[-/3W({A„})]. (2.6)

The parameter β depends on the symmetry properties
of the ensemble of scattering matrices. If time-reversal
symmetry is broken (by a magnetic field), β = 2. In the
presence of time-reversal symmetry, β = l if the scatter-
ing is spin independent, while β = 4 for strong spin-orbit
scattering.24'25 These three universality classes are re-
ferred to äs the orthogonal (ß = 1), unitary (ß = 2), and
symplectic (ß = 4) ensembles.12

The probability distribution (2.5) has the form of a
Gibbs distribution, with the symmetry parameter ß play-
ing the role of inverse temperature, and the "Hamilto-
nian" Ή. containing a logarithmic repulsive interaction
plus a confining potential V. The function V (λ) is chosen
such that P yields the required average eigenvalue den-
sity (which depends on the sample size and the degree of
disorder). Note that V may also be a function of ß. The
logarithmic interaction has a fundamental geometric ori-
gin: The factor exp(/3£),<.,ln |λ,-λ,|) = EUj |λ,-λ,|*
is the Jacobian associated with the transformation from
the space of scattering matrices s to the smaller space
of transmission eigenvalues T"„.6~9'26 The form (2.5) for
the probability distribution is based on (a) an isotropy
assumption, which implies that flux incident in one scat-
tering channel is, on average, equally distributed among
all outgoing channels; and (b) a maximum entropy hy-
pothesis, which yields (2.5) äs the least restrictive dis-
tribution consistent with a given average eigenvalue den-
sity. Assumption (a) requires a conductor much longer
than wide, i.e., the quasi-one-dimensional limit L ^> W.
Furthermore, the conductor should be long compared
to the mean free path / for elastic impurity scatter-
ing, in order to exclude ballistic transmission. Assump-
tion (b) has been justified by comparison with numeri-
cal simulations,6'7'27 but there exists no rigorous proof.
Indeed, it is conceivable that the true eigenvalue distri-
bution P({\n}) cannot be fully described by a one-body
potential V(X) plus Jacobian, äs in Eq. (2.5), but that it

contains additional many-body potentials. These would
modify the logarithmic interaction of the A's. We empha-
size this because one of the implications of our analysis
will be that Eq. (2.5) is not rigorously valid — although
the error is quite small.

The goal of our analysis is to obtain the variance of
the linear statistic (2.4) from the eigenvalue distribution
function (2.5). To this end we need to know how pairs of
transmission eigenvalues are correlated. Our approach is
to relate the correlation function to a functional deriva-
tive of the eigenvalue density with respect to V, and
then to evaluate this functional derivative in the limit
7V — > oo. This limit, taken at constant L and l, ensures
that the conductor is short compared to the localization
length N l — so that it is in the diffusive transport regime,
äs required for UCF.28 In this section we deal with the
first step of our program, which is an exercise in statis-
tical mechanics. A similar line of reasoning was used by
Politzer,29 for a different purpose (viz., to show that A
has a Gaussian distribution).

The mean density of transmission eigenvalues ( p ( \ ) ) is
defined äs the ensemble average of the microscopic den-
sity p(X):

N

i · · · idXNp(X) exp(-ßH)
- J— - .

ld\i··· l dXN exp(-ßH)

(2.7)

(2.8)

We define the "two-point correlation function" K^(X, λ')
by

It is related to the "two-level cluster function" T2(X, λ')
of Ref. 12 by

K2(X, λ') = Γ2(λ, λ') - (ρ(λ))6(λ - λ'). (2.10)

We include the singular self-correlation in the correlation
function because it contributes to the variance of a linear
statistic (see below).

To obtain the required relationship, we take the func-
tional derivative of (p(X)) with respect to V(X'). Since
6H/6V(X) = p(X), differentiation of Eq. (2.8) yields

ÖV(X')

•ß

dXNp(X)p(X') exp(-/3W)

i··· fdXNex.p(-ßH)

fd\i · · · fdXNp(X) exp(-/3

fdXi · · · [
J J

dXN exp(-ßH)

/ r
I dXi ·

( !d>
·· idXNp(X')exp(-ßH)

i··· dXNexp(-ßH)
J

(2.11)
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Hence we obtain the key relation

_ l 6(p(X))
Ι\2{Λ, Λ ) — — . l^/.l/j

The linear statistic (2.4) can be written in terms of the
microscopic eigenvalue density (2.7),

A= ( dXa(X)p(X}. (2.13)
Jo

The ensemble average (A) is

/

oo
dXa(X)(p(X)), (2.14)

.

so that the variance Var A = (A2) — (A)2 becomes

= - / dX f dX'a(X)a(X')K2(X,X')
Jo Jo

(2.15)

This relationship between the variance of a linear statistic
and the functional derivative of the density of transmis-
sion eigenvalues is an exact consequence of the probabil-
ity distribution (2.5).

An immediate implication of Eq. (2.15) is that Var A oc
1//3, provided the functional derivative δ (ρ) /SV is inde-
pendent of the symmetry parameter ß. As we will see in
the next section, this is indeed the case for 7V —> oo —
regardless of any ß dependence of V. Furthermore, since
all microscopic details of the System enter via the "po-
tential" V(X), universality of the fluctuations is obtained
if (p) is a linear functional of V. Again, this holds for
N —> oo, äs we will see next.

III. INTEGRAL EQUATION
FOR THE EIGENVALUE DENSITY

To evaluate the functional derivative (2.12) we must
know how the density of transmission eigenvalues (p) de-
pends on the potential V in the Hamiltonian (2.5). This
problem has been addressed before in the random-matrix
theory of energy levels, which is also based on the dis-
tribution function (2.5), but without the positivity con-
straint on A. For that case, Dyson14 has derived the
following equation:

work with the linear integral equation

dX' (p(X')) In |A - λ' = V(A) + const. (3.3)

Equation (3.3) has the intuitive "mean-field" Interpreta-
tion (originally due to Wigner30) that the "charge den-
sity" (p) adjusts itself to the "external potential" V in
such a way that the total force on any charge λ vanishes.
The more accurate equation (3.1) shows that, in fact, Eq.
(3.3) is the leading term in a l /N expansion.

In Dyson's derivation of Eq. (3.1), essential use is made
of the fact that all integrals run from —oo to +00.31 In
our case, the Integration ränge is from 0 to oo. In Ap-
pendix A we show how Dyson's analysis can be modified
to incorporate the positivity constraint on λ. The final
result is still Eq. (3.1), i.e., the positivity constraint in-
troduces no extra terms to the order considered.

To obtain the two-point correlation function Ä2(A,A')
in the limit N —> oo we thus need to study the integral
equation (3.3). The functional derivative δ (p)/SV equals
the solving kernel of

dX' φ(Χ') In |A - A'| = φ(Χ) + const, (3.4)

where the additive constant has to be chosen such that
ψ has zero mean,

(3-5)

since the variations in (p) have to occur at constant N.
Because of Eq. (2.12), the integral solution

=
Jo

άΧ'βΚ2(Χ,Χ')φ(Χ') (3.6)

of Eq. (3.4) directly determines the two-point correlation
function, and hence the variance (2.15) of a linear statis-
tic. Since the integral equation (3.4) does not contain
any microscopic parameters and is independent of the
symmetry parameter ß, the two Statements of universal-
ity made at the end of See. II are now validated: Var A
is inversely proportional to ß and is independent of mi-
croscopic parameters. To calculate the value of Var Λ we
have to determine the solving kernel of Eq. (3.4). This is
the subject of the next section.

/

ß — 2
dX' (p(X')} In |A - A' + i-—— m{p(A)} = V(A) + const, IV. SOLUTION OF THE INTEGRAL EQUATION

2p

(3.1)

where the additive constant is to be determined from the
normalization condition

The integral equation (3.4) can be solved analytically
by a Mellin-transform technique. We define

dX(p(X}) =N. (3.2)

χ = 1ηλ, — oo < χ < oo,

ψ(χ) = εχψ(εχ),

φ(χ)=φ(εχ),

The second term on the left-hand side of Eq. (3.1) is of
order N"1 In N relative to the first, and terms of still
higher order in l/N are neglected. To calculate the two-
point correlation function (2.12) in leading order it is
sufficient to retain only the first term, so that we can

(4.1)

(4.2)

(4.3)

(4.4)

In the new variable χ Eqs. (3.4) and (3.5) become

dx1 $(x')C(x, χ') = φ(χ] + const, (4.5)/J —<.
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fJ — c
άχψ(χ) = 0,

with kernel C(x,x') = ln|e x — ex

equals

= f
J—

dx' βΚ2(χ,χ')φ(χ'),

(4.6)

The inverse of C

(4.7)

in accordance with Eq. (3.6). To proceed, we note that
the integral equation (4.5) is invariant under the trans-
formation

since the integral fax' ψ(χ')/(χ) vanishes by virtue of

condition (4.6), while the integral fdx'-^(x')g(x') con-
tributes an x-independent constant which can be ab-
sorbed in the constant at the right-hand side of Eq. (4.5).
We now choose f ( x ) — —\x and g(x') = -\x'· The
transformed kernel becomes translationally invariant,

In - e. (4.9)

In this way we succeeded in reducing the integral equa-
tion (3.4) to a convolution,

dx' ψ(χ') In 2sinh = φ(χ) + const,

(4.10)

which can be solved easily by Fourier transformation.
We define the Fourier transform of an arbitrary func-

tion f ( x ) by

=
J~

dxeikxf(x}. (4.11)

Fourier transformation of the kernel yields

dx eikx In 2 sinh - = --cotanh^/c). (4.12)
k

Hence Eq. (4.10) has the fc-space solution

= tanh^fc)^(fc).
7Γ

(4.13)

Equation (4.6) is automatically satisfied, provided

linifc^o k2(j)(k) = 0.
We conclude from Eqs. (4.7) and (4.10) that the two-

point correlation function in the variable χ is transla-
tionally invariant, Κ·2(χ,χ') = K^(x — x'), with Fourier
transform

/

°° k
dxe1 xKz(x) =

• oo πΡ

Inversion of the Fourier transform yields

— ikx f> fi\

(4.14)

= — l dk e
^ J-oo

l_C

~~^9~
In tanh- (4.15)

In contrast, the two-point correlation function KI(\, λ')
in the original variable λ is not translationally invariant.
Using the relation (4.4) between K% and Κ%, we find from
Eq. (4.15) the expression

Λ/λ- %/λ7

Λ/λ7
(4.16)

The kernel K^(X, λ') has an integrable singularity for λ =
λ'. The nonsingular part is obtained by carrying out the
differentiation in Eq. (4.16), with the result

2π2/3
(λλ'Γ1/2(λ + λ')(λ - λΛ-2

if λ φ λ'. (4.17)

It is of interest to compare our asymptotic result for
the two-point correlation für' üon with the exact result of
Slevin, Pichard, and Mello22 for the Laguerre ensemble,
defined by Eq. (2.5) with β = 2 and V(\) = ±λ- ±α!ηλ.
The parameter α > -l is arbitrary (the case a = 0
has also been considered in Ref. 7). For this ensemble
the correlation function can be calculated exactly, using
the method of orthogonal polynomials.12 Slevin, Pichard,
and Mello find for the two-level cluster function Τ2(λ, λ')
the formula

Τ2(λ,λ') = e

N-l

-L%(X)L%(X')\ .(4.18)

For N~1/2 < λ,λ' < Nl/2 an asymptotic expansion of
the Laguerre polynomials L% yields22

'sw[2NV2(VX-

Λ/λ-Λ/λ 7

cos[27V1/2(y/X + -/λ7) - πα]
(4.19)

If λ φ· λ' the two-level cluster function Τ2(λ, λ') and the
two-point correlation function K 2 ( X , λ') are identical [cf.
Eq. (2.10)], so that we can compare with Eq. (4.17). The
sine and cosine in Eq. (4.19) oscillate rapidly for N —> oo,
and hence may be smoothed out by averaging λ and λ'
over a ränge 6X much larger than l/N, but much smaller
than 1. The sin2 and cos2 terms average to |, while the
cross term sin χ cos averages to zero, independently of a.
Equation (4.19) then reduces to

T f\ \'\ — f\\r\-l/2) 1/2ϊΜλ,λ)--^(λλ) |(v/x_^)2

V2

(Λ/λ + Λ/λ7)2

(4.20)



15768 C. W. J. BEENAKKER 47

which is the same äs our Eq. (4.17) for β — 2.
For N —> oo the peak in T2(X, λ') at λ « λ' can

be approximated by the delta function (ρ(Χ))δ(Χ — λ').
[Note that f d X ' T 2 ( X , X ' ) = (p(X)), by defmition.j It is
not obvious analytically that the remaining singularity in
K 2 ( X , X ' ) = Τ 2 ( Χ , Χ ' ) - ( ρ ( Χ ) ) δ ( Χ - Χ ' ) has the asymptotic
form (4.16). A numerical demonstration of the equiva-
lence will be given in See. VII.

V. FORMULA FOR THE VARIANCE
OF A LINEAR STATISTIC

We are now ready to evaluate the variance of the linear
statistic A = Ση

 α(λη)· We define

ä(x)=a(ex). (5.1)

Using also the definition (4.4), Eq. (2.15) takes the form

= - i dx i dx'ä(x)ä(x')K2(x,x'). (5.2)
J—oo J — oo

In the preceding section we have found that the two-point
correlation function K2(x, x') is translationally invariant,
with Fourier transform K2(k) given by Eq. (4.14). We de-
fine the Fourier transform of ä(x) according to Eq. (4.11),

/

°° f°°
dxeikxü(x) = (ίλλ^-Μ

-oo JO
). (5.3)

The Fourier transform with respect to χ is a Mellin trans-
form with respect to λ. Equation (5.2) becomes in k
space

l f°°
VarA = / dk\ä(k)\2K2(k). (5.4)

2ττ / ,γ,

Substituting Eq. (4.14) we obtain the formula

l l Γ00

= - —-g / dk \ä(k) 2 fctanh(?rfc) (5.5)

for the variance of a linear statistic on the transmission
eigenvalues. Equation (5.5) is equivalent to Eq. (1.2) in
the Introduction.

The formula (5.5) is for the quantum transport prob-
lem what the Dyson-Mehta formula was for the problem
of the statistics of energy levels. A derivation of the lat-
ter formula along the lines set out in the present paper
(which is more general than previous derivations) is given
in Appendix B.

Before proceeding to the application of Eq. (5.5) to a
variety of linear statistics, we give for completeness the
λ representation of this formula. Substituting Eq. (4.16)
into Eq. (2.15), and carrying out two partial integrations,
one finds

1 1 Γ,η=-ß^LdX ' f d a ( X ) \ f d a ( X ' }
αλ ( dx ) (^^

χ In . (5.6)

Equation (5.6) requires that ο(λ) is differentiable. In par-

ticular, Va,rA diverges logarithmically for a step function,
α(λ) = 0(XC — λ). For such artificial linear statistics the
variance does not have a universal N —> oo limit, but
increases äs In ./V for large N.18 All physical properties
considered in the next section, however, are smooth (dif-
ferentiable) functions of λ.

VI. APPLICATIONS

We list various applications of the variance formula
(5.5) without discussion, which we defer to See. VIII.

A. Conductance

The conductance G is related to the transmission
eigenvalues by the Landauer formula1

N N

(6.1)
„=i „=i

Here GQ = 2e2/h is the conductance quantum. The
conductance is a linear statistic of the form (2.4), with
α(λ) = (l + λ)"1. The Mellin transform of α(λ), i.e., the
Fourier transform of (l + ex)~1, is

... f
a(k) = l dx c

ikx = ______
_00 l + ex sinh(Trfc)'

(6.2)

Substitution into Eq. (5.5) yields the variance

k
Var(G/G 0)=/3- 1

J_0

dk
sinh(2?rfc) 8

B. Shot noise

The shot-noise power P is given by32

= -r1. (6.3)

N N

P/Po =
\

Ί 2 >
(6.4)

η=1 n=1

with PO = 2e\U\G0 (U is the applied voltage). The Mellin
transform of α(λ) — λ(1 + λ)~2 is

Hence the variance becomes

/

(00 ̂  k3 l
dk = —/

oo sinh(27rfc) 64

(6.5)

(6.6)

C. Normal-superconductor Interface

The conductance GNS of a disordered microbridge be-
tween a normal and a superconducting reservoir is related
to the transmission eigenvalues in the normal state by33

N

-' Σ
N

Σ 2λη)2'
(6.7)

n=l ^ n/ n=l

This expression holds only in zero magnetic field (ß = 1).
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The Mellin transform of α(λ) = 2(1 + 2λ)~2 is

2Γ*
ä(k) = \

J — c

dx e1 i f c ln2

which leads to the variance

Var(GNS/G0) = 4 Γ c

where we have set β equal to 1.

(6.8)

= ' (6'9)

D. Josephson junction

The supercurrent-phase relationship Ι(φ) of a point-
contact Josephson junction can be expressed in terms of
the normal-state transmission eigenvalues,19

N

(6.10)

where again β = l is required. Here /0 = eA/h is the
supercurrent quantum (Δ being the energy gap in the
superconductor). In this case it is easiest to start from
the variance formula (5.6) in the λ representation, which
can be integrated numerically. The resulting root-mean-
square value rmsJ = (Var/)1/2 is plotted in Fig. l, for
phase differences in the interval (Ο,π) (since the vari-
ance is π periodic). The limiting behavior at the edges
of the interval can be computed analytically from Eqs.
(5.5) and (6.10). for small φ, rms /(</>) increases linearly
from zero with slope 2~5/2eA/fi,; for φ — > π, rms Ι(φ)
approaches the value π~ιεΑ/Η. The increase is almost,
but not quite, monotonic (there is a slight maximum at
φ «2.7).

For comparison, we have also plotted in Fig. l the en-
semble average {/(</>)) of the supercurrent, given by34'35

ττΔ
= - (G) arctanh (6.11)

0.7

t-,

3
ο

ω̂
Ά

phase difference

FIG. 1. Supercurrent I (in units of eA/fi), äs a function
of the phase difference φ across the Josephson junction. The
solid curve is the square root of the variance of /, computed
from Eqs. (5.6) and (6.10). The dotted curve is the ensem-
ble average of / (scaled by Nl/L), computed from Eq. (6.11).
The root-mean-square fluctuation rms/c in the critical cur-
rent equals rms/ at φ = 1.97.

Here (G) = (2e2/h)Nl/L is the ensemble-averaged con-
ductance of the same junction (with length L and mean
free path l) in the normal state. For φ —> π, (Ι(φ)) goes
to zero while rms /(</>) remains finite. These two limits
can be reconciled by noting that our result for the vari-
ance holds in the limit 7V —> oo at constant φ. Taking
the limit N —* oo before taking the limit φ —» π ensures
that the fluctuations in the supercurrent remain smaller
than the average. A calculation to higher order in l/N
is needed to show that rms Ι(φ) goes to zero at φ = π.

The maximum value of the supercurrent is known äs
the cntical current of the Josephson junction. The criti-
cal current Jc = maxi (φ) Ξ Ι(φ0) is not by definition a
linear statistic, since the phase difference φ0 at which the
maximum supercurrent is reached depends itself on all
the transmission eigenvalues. It is therefore not possible
in general to write /c in the form Ση f(Tn), äs required
for a linear statistic. However, Ic does become a linear
statistic in the limit N —> oo.35 To see this, we write

where the function Χ(φ) accounts for the sample-to-
sample fluctuations of Ι(φ) around the ensemble average
(Ι(φ)). One has (X) = 0, rmsX = 0(1). We now ex-

pand Ic to lowest order in e. We define φ0 = φ0 + ίφ\ ,

where max{/(</>)) = ( Ι ( φ ΐ ' ) ) . The phase difference

φο — 1.97 is the phase difference at which the ensemble-
averaged supercurrent (6.11) reaches its maximum. One
has

(6.13)

up to terms of order e2. In the third equality we have

used that, by defmition, ά(Ι)/άφ = 0 at φ — φ^\ Since

Ι(φο ) is a linear statistic on Tn, we conclude that the
critical current Ic is a linear statistic on the transmission
eigenvalues in the limit e = L/Nl — > 0, with rms/c =

rms/(</>c ). From the data in Fig. l we find

rms Ic =0.29 eA/h. (6.14)

VII. COMPARISON WITH NUMERICAL
CALCULATIONS

As an independent check of the validity of our asymp-
totic analysis, we have compared Eq. (5.5) with an ex-
actly solvable model. We consider the Laguerre ensem-
ble (cf. See. IV), defined by Eq. (2.5) with β = 2 and
V(\) = ^\ — ̂ α ΐηλ. The parameter α > — l plays
the role of a microscopic parameter. In this ensemble,
the variance of the linear statistic (2.4) is given exactly
by7'22

ΛΟΟ

V a r A = / d\a(X)2kNct(X,\)
Jo

roo ΛΟΟ

- dX dX'a(X)a(X')[kN,a(X,X')}2, (7.1)
Jo Jo



15770 C. W. J. BEENAKKER 47
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FIG. 2. Variance of the conductance G (in units of Go =
2e2//i), äs a function of the number of channels 7V. The data
points are obtained by Integration of the exact correlation
function in the Laguerre ensemble (Refs. 7 and 22), for var-
ious values of the microscopic parameter α [Eqs. (7.1) and
(7.2)]. The estimated error in the numerical Integration is
±0.001. (For a = —0.5 we could only integrate with the re-
quired accuracy for 7V up to 25.) The horizontal line at 0.0625
is the α-independent value predicted in the limit 7V —> oo by
Eq. (5.5), for/3 = 2.

sa/2 _(λ+λ')/2
; c-

ΛΓ-1
Γ(η

Γ(η
(7.2)

η=0

We evaluated the Integrals over the Laguerre polynomials
L" numerically. In Fig. 2 we show the comparison for the
variance of the conductance [Eq. (6.1)]. For the Laguerre
ensemble (which has β = 2) we would expect from Eq.
(6.3) that Var(G/G0) = 0.0625 for 7V » l, independent
of N and a. As one can see in Fig. 2, this is indeed what
we find (within numerical accuracy) from Integration of
the exact correlation function. Note that the convergence
is not uniform in a. For a = 0 the large-7V limit is
reached already at 7V « 10, while for a = 2 we need to
go up to 7V KS 100.

We have checked for all the transport properties men-
tioned in See. VI that the variances predicted by Eq.
(5.5) agree with the numerical results from the Laguerre
ensemble for large 7V. We consider this strong evidence
for the validity of the asymptotic analysis leading to Eq.
(5.5).

VIII. COMPARISON WITH OTHER THEORIES

We return to the applications of the variance formula
given in See. VI, and compare these with previous theo-
retical work on mesoscopic fluctuations.

A. Conductance

The diagrammatic perturbation theory2'3 of UCF
yields Var(G/Go) = ^ß~l for a quasi-one-dimensional
conductor (i.e., a conductor much longer than it is wide).
The coefncient | in Eq. (6.3) is close to, but not precisely
identical to, ^ . The smallness of the difference explains

why it was not noticed previously. In particular, the dif-
ference is too small to resolve by numerical simulations
of a microscopic model. From a practical point of view,
the discrepancy is not really significant, but conceptually
it has the important implication that the random-matrix
theory based on the probability distribution (2.5) is not
rigorously äquivalent to the diagrammatic perturbation
theory of UCF, which we hold to be exact. The conclu-
sion is that the interaction between the A's is not precisely
logarithmic.

A second implication of ^ ^ -^ is that the random-
matrix theory based on the probability distribution (2.5)
(the so-called "global approach" of Muttalib, Pichard,
and Stone6) is not precisely equivalent to the "local ap-
proach" of Mello, Pereyra, and Kumar.8 The local ap-
proach is based on an evolution equation for the prob-
ability distribution äs a function of the length of the
sample, and yields VarG = ^β~λ in agreement with
the diagrammatic perturbation theory.9 Previous work
by Mello and Pichard36 argues for the equivalence of the
local and global approaches. As we discuss in Appendix
C, their argument is insufncient: It starts from a one-
body potential V(X), i.e., it assumes that the interaction
between the A's is precisely logarithmic. We now know
that this is an approximation (albeit an excellent one). It
would be worthwhile to try to derive the interaction po-
tential from the asymptotic solution of Mello's evolution
equation and see how it differs from a two-body logarith-
mic interaction. We have not made any progress in this
direction.

The above discussion of a small deviation from
purely logarithmic interaction refers to the quasi-one-
dimensional transport regime. In higher dimensions the
Situation is different. We know from the diagrammatic
perturbation theory2'3 that VarG depends on the ge-
ometry of the conductor. The isotropy assumption re-
stricts the random-matrix theory (both global and lo-
cal approaches) to the quasi-one-dimensional limit of a
long and narrow conductor. It has been conjectured22

that the geometry dependence of Var G can still be de-
scribed by the probability distribution (2.5), through a
dimensionality-dependent confming potential V (λ). The
variance formula (5.5) demonstrates that this is not the
case, since Var G is independent of V in the large-7V limit.
The implication is that in higher dimensions the logarith-
mic interaction in Eq. (2.5) is no longer a suitable ap-
proximation. This conclusion was reached independently,
through numerical simulations, by Slevin, Pichard, and
Muttalib.27

B. Shot noise

A previous calculation of the variance of the shot-noise
power based on Mello's evolution equation (the local ap-
proach mentioned above) has been carried out by De Jong
and the present author.21 The calculation applies a mo-
ment expansion technique,9 which works for linear statis-
tics A = Ση f(Tn) for which /(T) is a low-order polyno-
mial in T. [For the shot-noise /(T) oc T(l - T); cf. Eq.
(6.4).] The result of Ref. 21 is Var(P/P0) = ^ß~1·
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The coefficient ^ w 0.0156 in Eq. (6.6) is again close
to, but not precisely identical to ~ 0.0162. This is
a similar discrepancy to that for the conductance, and
similar comments apply.

C. Normal-superconductor Interface

A calculation of the variance of the conductance of a
normal-superconductor (NS) junction was carried out by
means of diagrammatic perturbation theory by Takane
and Ebisawa.20 Only one of the contributing diagrams
was evaluated explicitly, from which they estimated
Var GNS ~ 6 Var G (where G is the conductance of
the junction in the normal state). Numerical simu-
lations by these same authors37 yielded the estimate
Var GNS « 4 Var G. From Eqs. (6.3) and (6.9) we find
Var GNS = f ^ar *-*· ^-^ difference with the numerical
simulations is within the numerical accuracy of the latter.

In the presence of a magnetic field the conductance
GNS of the NS junction is no longer a linear statistic.33

Numerical simulations38 show that the breaking of time-
reversal symmetry (ß = l -> β = 2) leaves Var GNS es-
sentially unchanged — while the variance Var G of the
normal-state conductance is reduced by a factor of 2
(äs expected from the l/ β dependence of the variance
of a linear statistic). An analytical theory of the non-
universal β dependence of Var GNS is still lacking.

D. Josephson junction

The order of magnitude rms/c ~ εΔ/Τι of the fluc-
tuations in the critical current was reported previously
by the present author.19'35 This result holds for a point-
contact Josephson junction, which is short compared to
the superconducting coherence length ξ = (Τΐτ^ί/πΔ)1/2

(where VF is the Fermi velocity and l the mean free
path). If the junction is long compared to ξ, the super-
current is no longer a linear statistic on the transmission
eigenvalues.19 The long-junction limit L » ξ was studied
by Al'tshuler and Spivak.39 They find the nonuniversal
result rms/c — e-u^Z/L2, which depends on sample size
and degree of disorder.

IX. CONCLUSION

We have presented a method to treat the eigenvalue
correlations in random-matrix ensembles. The method is
based on (1) a functional derivative relation between the
mean eigenvalue density and the density-density correla-
tion function and (2) an integral equation14 for the eigen-
value density, valid asymptotically in the high-density
(large-./V) limit. When applied to the random-matrix the-
ory of energy-level statistics, our method provides a more
general derivation of the Dyson-Mehta formula18 for the
variance of a linear statistic on the energy levels. When
applied to the random-matrix theory of quantum trans-
port, the functional-derivative method yields the corre-
sponding formula for the variance of a linear statistic on
the transmission eigenvalues. This formula demonstrates
that the universality which was established in the theory

of universal conductance fluctuations2·3 is generic for a
whole class of transport properties in conductors and su-
perconductors. Such universality was anticipated5 from
the random-matrix theory of energy levels, but could not
prev'ously be established because of the absence of trans-
lational invariance of the correlation function of trans-
mission coefficients (originating from the unitarity of the
scattering matrix).7 The functional-derivative method
presented here requires no translational invariance, and
thus allows one to solve this problem. The solution has
revealed a small numerical discrepancy with the diagram-
matic perturbation theory, which implies that the eigen-
value repulsion is not precisely logarithmic in the ratio
of reflection to transmission coefficients (the λ variables)
— äs assumed thus far.

It is likely that the functional-derivative method de-
scribed in this paper can be of use for other problems
in random-matrix theory. One such application is the
recent work by Jalabert, Pichard, and the present au-
thor on the problem of long-range energy-level interac-
tion in metallic particles.41 In this inverse problem the
functional-derivative method was used to calculate the
deviations from logarithmic energy-level repulsion im-
plied by the known4 two-point correlation function of the
energj levels. We expect other applications to follow.
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APPENDIX A: DERIVATION OF EQ. (3.1)

Dyson's derivation14 of the integral equation (3.1) for
(ρ(λ)) makes essential use of the fact that the variables
λη are free to vary from —oo to +00. In the quantum
transpo.t problem, however, the An's are strictly positive.
Here we show how Dyson's derivation can be modified to
account for the positivity constraint.

The first step is to transform from the variables Xn

to the variables xn Ξ 1ηλη. Since Xn € (0, oo), xn G
(—00, oo). The probability distribution (2.5) becomes, in
the new variables,

P({xn}) = Z-1 exph9W(K})],

(AI)

The factor exp(^ta;z) = Πι ̂  'ls ^he Jacobian for the
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transformation from λ to x. By using the identity (4.9), The function y(x,x') = y(x',x) is Symmetrie, and satis-

the "Hamiltonian" Ή.({χη}} for the x variables can be nes

rewritten in terms of a translationally invariant interac- r°°
tion plus a one-body potential, / dx'y(x,x')(p(x')) = l, (AlO)

J—00

(A2)

After these preliminaries we proceed äs follows. The
distribution function P({xn}) satisfies the differential
equations (one for each i = 1,2,.. . , TV)

(A3)

We multiply Eq. (A3) by <5(x — x t), integrate over
xi, £2 , . . . , XN, and sum over i. The result is

J fOO ΛΟΟ

— (p(x))+ß dXl··· dxNP({xn})
ax J-oa J-oo

N

(x-x^-0\x -»Ί/ Q_ "~ ui

t=i
(A4)

where (p(x)) is the mean density of the xn's,

i=l

ΛΟΟ

/

oo ΛΟΟ "i

dx!··· dxNP({xn}) y^ 6(x - xl).
-oo J— oo -i

(A5)

Substitution of the expression (A2) for H into Eq. (A4)
leads to

/

oo
cix'(yÖ2(x,x'))cotanh(^J =0, (A6)

-00 ^ '

where Pj indicates the principal value of the integral.
The pair density (ρ2(χ,χ')} is defined by

The pair density is Symmetrie in its arguments,
( p 2 ( x , x ' ) ) = (pz(x'i x)}·, and satisfies the normalization

(A8)

Following Ref. 14 we decompose the pair density into
a correlated and an uncorrelated part,

(A9)

in view of the normalization (A8). Substitution of the
definition (A9) into Eq. (A6) leads to

iß(p(x)}I(x)=0, (All)

with the definitions

I(x) = P i dx'(p(x'))y(x, x')cotanh (^} , (Α12)
J-oo ^ 'oo

oo

/

oo
dx'(p(x'))m

-oo
(A13)

Equation (All) is still exact. To introduce the ap-
proximation we need one further piece of notation. We
reexpress the function y(x,x') in terms of the sum and
difference variables t = ^(x + x') and s = x' — x:

y(x,x'} - x'),x' - χ] Ξ Y(t,s). (A14)

The function Y(t, s) = Y(t, —s) is even in s. The nor-
malization (AlO) becomes

(A15)

Similarly, the integral (A12) takes the form

I(x) = -pf dsY(x + ±s,
J — oo

By substituting the Taylor expansions

o

Y(x + |s, s) = F(x, s) + \s—Y(x, s) +

(p(x + s)) = (p(x)) + s-^-(~p(x}} + ···,

coth(|s) = 2s"1 + ^s H

(A16)

(A17)

(A18)

(A19)

into Eq. (A16), we obtain an expansion of/(x) in higher
and higher moments Yp(x) of Y(x, s) with respect to s,

= f
J -

dsY(x,s}sp. (A20)

Because of the symmetry Y(t,s) = Y(t,—s) only even
moments contribute [^(x) Ξ 0 for p odd]. Following
Dyson,14 we neglect the second and higher moments. An
order of magnitude estimate suggests that the error in-
volved in neglecting Yp for p > 2 is of order ./V"2. Dyson
argues that the error is actually of order N~2 In N, by
comparison with exact results for the distribution of the
spacing of eigenvalues.

Since Yli(x) and Y\(x} are identically zero, only YQ(X)
contributes to J(x) to second order. Substitution of the
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Taylor expansions (A17)-(A19) into Eq. f A16) yields

I(x) = -(ρ(χ))±Υ0(χ) - 2Y0(x)^(p(x)). (A21)

Similarly, Substitution of the Taylor expansions into Eq.
(A15) yields

(ß(x))Y0(x) = 1.

Combining Eqs. (A21) and (A22) we find

Ι(χ) = -(~ρ(χ)Γι~(~ρ(χ)}.

Hence Eq. (All) takes the form

(A22)

(Α23)

) — [V(x) + U(x)} = Q,
dx

(A24)

or equivalently [using definitions (A2) and (A13)]

ß-2f°°
/ dx'(p(x'))

J —00

\n

. (A25)

The final step of our derivation is to transform back
from χ to λ = ex . The densities are related by (p(x))dx =
(p(X))d\, hence

(x)) = X(p(X)}. (A26)

Using also the identity (4.9), plus the normalization
f(p}d\ = N, we find from Eq. (A25) the result

dX' (ρ(λ')) In |λ - λ' + - 1η(ρ(λ)) = V (λ) + const.

(A27)

This is the integral equation (3.1).

APPENDIX B: DYSON-MEHTA
FORMULA REVISITED

The functional-derivative method developed in this pa-
per for the quantum transport problem can be equally
well applied to the statistics of energy levels. In that
problem, we recall, the variable λ is free to vary from
—oo to +00, and hence we can define a Fourier trans-
form with respect to λ:

o(fc) = / dX e^a(X) ( E l )

The integral equation (3.3) is now a convolution (since
the integral ranges over the whole real axis). Fourier
transformation of the kernel f^° dAe z f c Mn|A | = —7r/|fc|
yields the functional derivative

i
π2 d(X - λ')2 1η|λ-λ' (B2)

Using Eq. (2.12) we find that the (translationally invari-
ant) two-point correlation function Kz(X, λ') = K^(\ —
λ') is given by

1 Λ2

ι|λ|. (Β3)

The Fourier-transformed correlation function K2(k) =
— \k\/Ttß is simply l/β times the inverse of the Fourier-
transformed interaction kernel. Substitution of the two-
point correlation function into Eq. (2.15) yields the vari-
ance of the linear statistic (2.4),

(B4)

This is the Dyson-Mehta formula quoted in the Introduc-
tion.

The difference between Eqs. (5.5) and (B4) originates
from the positivity constraint on λ in the quantum trans-
port problem. Dyson and Mehta18 derived their formula
by approximating an exact expression for the two-point
correlation function in the Gaussian unitary ensemble of
random Hamiltonians [defined by Eq. (2.5) with β = 2
and V(\) oc λ2]. A recent treatment by Mehta40 deals
with the Gaussian orthogonal and Gaussian symplectic
ensembles (ß — l and β = 4), still requiring a quadratic
V(X). The present derivation is more general, showing
that Eq. (B4) holds for any β and V.

APPENDIX C: GLOBAL VERSUS
LOCAL APPROACH

The present paper is based on the probability distri-
bution function (2.5) for the transmission eigenvalues.
This is the so-called global approach to random-matrix
theory.6 The so-called local approach Starts from the evo-
lution equation8

d

(Cl)

which governs the sample-length dependence of the prob-
ability distribution in the quasi-one-dimensional limit.
Here J({Xn}) denotes the Jacobian,

- λ l/3

(C2)

associated with the transformation from matrix to eigen-
value space. It was believed until now that the global and
local approaches were equivalent, i.e., that they would
give the same large-7V results for the mesoscopic fluc-
tuations if the potential V(X) in Eq. (2.5) was suit-
ably chosen.7'36 The present theory has shown that
this is not correct: The variance of the conductance is



15774 C. W. J. BEENAKKER 47

Var (G/Go) = \ß x in the global approach, independent
of V(X), whereas the local approach is known9 to yield
Var (G/G0) = ^ß'1· In See. VIII we have discussed the
implications of this difference for the interaction of the
eigenvalues. In this appendix we reconsider the argument
of Mello and Pichard36 for the equivalence of the two the-
ories, and indicate why their argument is insufficient.

Consider the probability distribution function

P({Xn}) = Z'1 exp[-/3H({Än})],

(03)

which is more general than Eq. (2.5) because V is now
allowed to be a many-body potential. By construction,
the function P({Xn}} satisfies

By integrating Eq. (04) one readily shows that the mean
density of eigenvalues

/•OO ΛΟΟ Jy

= \ d\l··· d\NP({\n}} Σ 6(Χ ~ λ*) (°5)
7o Jo l=1

satisfies the relation

(C6)

where P indicates the principal value. The function
(ρ%(λ, λ')) is the pair density of eigenvalues,

and (/(λ)) is the mean force density due to the potential
V,

(08)

Following Ref. 36, let us now assume that the prob-
ability distribution P defined in Eq. (C4) evolves with
sample length according to the evolution equation (Cl)
of the local approach. By substituting Eq. (04) into Eq.
(Cl), and integrating, one obtains for the eigenvalue den-
sity the evolution equation

(C9)

On the other hand, direct Integration of the evolution
equation (Cl) yields

9 , „„ 2/3 d

(CIO)

The two equations (C9) and (CIO) are consistent because
of the relation (06).

In the global approach the potential V is assumed to
be a one-body potential, i.e., V({Xn}) = Σι^Ό^ι)· The
force density (/(λ)) is then equal to — (p(X))dV(X)/dX.
Equation (C6) becomes for large N the integral equation
(3.1) (cf. Appendix A), which ensures that Eqs. (C9) and
(CIO) are consistent. In this way Mello and Pichard36

were able to demonstrate the consistency of the global
and local approach, assuming that V is a one-body po-
tential. However, äs demonstrated above, the consistency
holds for any many-body potential ^({λη}) — so that
this argument by itself is insufficient to decide whether
V is a one-body potential or not. We now know that it
is not.
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