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Rational Functions Invariant

under a Finite Abelian Group

H.W. Lenstra, Jr. (Amsterdam)

Introduction

Let k be a field and A a permutation group on n Symbols xl5 ...,x„.
Then A acts in a natural way äs a group of /c-automorphisms on the
field of rational functions k(x1,..., xn). It is an old question, whether the
field of invariants

k(Xl, ...,xn)A = {fek(Xl, ...,x„)|g(/)=/ for all geA}

is purely transcendental over k or not, cf. Burnside, Theory of groups
of finite order, second edition (1911), Ch. XVII. One usually calls this
problem "Emmy Noether's conjecture" although Emmy Noether never
stated that the answer would be affirmative [35-37].

Several positive results are known on this problem. Fischer [12]
treated the case when A is abelian and k contains sufficiently many
roots of unity. His result has been reproved [25, 7] and refined [32, 33]
several times. If A is a p-group, where p = char(k)Φ0, then k(x1,..., xn)A
is purely transcendental over fe, by [21, 20, 22, 16, 33]. Various groups

of small order are treated in [35, 37, 41, 14, 3-5, 30, 31, 23, 46, 17].

Swan [44] and Voskresenskü [46] proved that Q(xj, ...,x„)A is not
purely transcendental over Q if A is a cyclic group of order « = 47,
permuting xt,..., x„ transitively. An even smaller example is given by
n = 8, cf. (7.2). Further results for abelian A were obtained by Endo and
Miyata [10] and Voskresenskü [47, 48].

Our main theorem [27, 19] gives a complete solution for the case
when A is abelian and transitive. In this case we can index the x, by the
elements of A such that g(xh) = xgh for all g, he A; we denote the field
k({xg\geA})A by kA. Before stating the main theorem, we introduce some
terminology.

Let p be a finite cyclic group of order m with generator τ, and let
ΦΜεΖ[Χ] be the m-th cyclotomic polynomial. The ideal <t>m (τ) Z [p] a Z [p]

(= group ring of p over Z) does not depend on the choice of τ, and we
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Then Z (p) s Z [ζ J, where £m denotes a primitive m-th root of umty,

so by [26, Ch IV, Th 4] the ring Z (p) is a Dedekmd domam The group

of umts of Z (p) contams p m a natural way
Denote by /ccycl the maximal cyclotomic extension of the field k mside

an algebraic closure Consider a subfield K c /ccycl contammg k for which

(0 1) pK = Gal(K/k) is fimte cyclic, with generator τκ,

and let p and s satisfy

(02) p is pnme, 2=|=p4=char(fc), seZ, ands^l

Then we define the Z(pK)-ideal aK(ps) by

if

% (Ps) = (τκ - 1, p) c Z (pK) if K = k (ζ,,) , where i e Z

is such that τκ(£ρ) = ̂,

This defimtion does not depend on the choice of τκ

For a fimte abehan group A, put m (A, p, s) = dimz/pZ(ps"1y4/pM)

(here 4̂ is wntten additively), and

the ideal product ranging over all p and s satisfymg (0 2)

Let r (A) be the highest power of 2 dividmg the exponent of A

Main Theorem. Let k be a field and let A be a fimte abehan group

Then the field

is purely transcendental over k if and only ij the following two conditwns
are satisfied

(i) for every mtermediate field k<=Kckcyi:l for which (0 i) holds, the
Ζ(ρκ)-ιάεαΙ ακ(Α) is prmcipal

(n) i/char(/c) + 2, then k̂ r(A)) u, a cyclic jield extonwn o/ k

Note that condition (n) is satisfied if char(/c) + 0

Sections 1-5 of the present paper are devoted to the proof of the

mam theorem The idea is to use Fischer's result that 1A is purely

transcendental over / if ! is a suitable cyclotomic extension of k The

"Galois descent" problem which anses m gomg from 1A to kA it. discussed,

m a more general settmg, m Sections l and 2 Section 3 gives some useful

techmcal Information The group A does not occur m these sections

In Section 4 we show that we may assume that char(k) does not divide
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the order of A, and Section 5 contains the proof of the main theorem.

Supplementary results are given in Section 6, and some corollaries are

indicated in Section 7.

The methods of this paper hardly exceed Galois theory and elemen-

tary commutative algebra. From cohomology of groups we need some

facts on H1 and H~1; these results are easily proved from the explicit

descriptions of H1 and H'1 given in [42, Ch. VII, VIII; 6, Ch. IV]. In

the proof of (2.6) we need that a projective module over an abelian group

ring has a rank; but this will be clear for the modules to which (2.6) is

applied. We shall use freely the theory of finitely generated torsion free

modules over a Dedekind ring [18]. Finally, the proofs of some corollaries

in Section 7 require some algebraic number theory.

In the rest of this paper we write "rational" instead of "purely

transcendental". A field extension kcL is called "stably rational" if

there exists a field extension L c L' of finite transcendence degree such

that L' is rational over both L and k. It is unknown whether "stably

rational" implies "rational" [40, 9, 34].

The notations Φη, ζη, Z(p) and kA have been introduced above. The

characteristic of a field k is denoted by char(fc), the degree of a field

extension kd by [/:fc] and the group of a Galois extension /ccl by

Gal (l/k). For a prime p, a p-group is a group whose order is a power of p.

The exponent of a group is the lowest common multiple of the orders

of its elements. If a group π acts on a set S, then 5π = {seS\ Υσεπ: cr(s) = s}.

The action of π on S is called trivial if S = S" and faithjul if for every

σε π, σ Φ1, there is an seS with σ (s) φ s. By a π-module we mean a left

module over the group ring Z [π], and we write ®π and Ηοηιπ instead

of ®Ζ[π] and Homz[7t], respectively. The group of units of a ring R with l

is denoted by R*. If M is a module and t is a nonnegative integer, then M'

denotes the direct sum of t copies of M; the only exception is the definition

of aK(A) above, where we mean ideal power. Set theoretic difference is

denoted by \, and \S\ is the cardinality of a set S. The end or the absence

of a proof is marked by D-

1. Permutation Modules and Rationality of Field Extensions

Let π be a finite group. A Λ-module is called a permutation module

if it is free äs an abelian group and has a Z-basis which is permuted by π.
For example, free π-modules are permutation modules, and Z, with

trivial π-action, is a permutation module.

Every permutation module is a direct sum of modules Z [π/π']; here

π'^π is a subgroup and

Z [π/π'] = Z [π] ®π- Ζ (äs π-module)



302 H W Lenstra Jr

where π' acts tnvially on Z We call a π-module N permutation-projectwe

if N®N' is a permutation module for some π-module N' One can

take N' to be fimtely generated if N is, cf the proof of (l 2)

(l 1) Proposition. Let N be a permutation-projective π-module Then

H"1(p,N) = H1 (p, N) = 0 jor every subgroup p c π

Proof Smce any permutation module over π is a permutalion module

over every subgroup ρ<=π, we may assume ρ = π Also we may take

N = Z [π/π'], for a subgroup π'<=π Then by Shapiro's lemma [6, Ch IV,

Prop 2] we have H1 (π, N) = H1 (π', Z) = 0, and the proof for JÜT1 is
analogous 0

(l 2) Proposition. Let N be a π-module The jollowmg Statements about N
are equwalent

(a) N is permutation-projective

(b) for every π-homomorphism Mt-^M2 which mduces surjective maps

MP{-*MP2 jor all subgroups pczn, the mduced map

HomJN, M!)-> HomJJV, M2)

;s surjectwe

(c) if L is a π-module such that H1 (p, L) = 0 /or all pczn, then every

exact sequence oj π-modules

0~>L->M"*N->0

sphts

Prooj (a) =*· (b) We may take N = Z [π/ρ] for some subgroup p c π

Then the functors HomJJV, -) and (~)p are equwalent, and (b) follows

(b) => (c) Let 0->L-+M~->N->Q be a sequence äs m (c) By the exact
sequence of cohomology, the map M"-+NP is surjective for every
subgroup pc π Applymg (b) to M1=M and M2 = N we find that the
sequence sphts

(c) => (a) One easily constructs a permutation module M over π and

a π-homomorphism M->N such that MP->NP is surjective for every

ρα:π LetLbethekernelofM->N The exact sequence of cohomology of

and (l 1) show that Hi(p,L)=0 for every ρ<=π By (c), the sequence
sphts, and (a) follows D

Note the analogy with the well known charactenzation of projective

modules äs direct summands of free modules
Let l be a field, M a free abelian group of fmite Z-rank r, and / [M]

the group ring of M over / If M is wntten multiphcatively and {bt, , br}
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is a Z-basis for M, then

/[M] = /[&!, ΛΑ'1. A"1]

Fhus we see that / [M] is isomorphic to the ring of Laurent polynomials

in r variables over / It follows that / [M] is a unique factonzation domam

with group of units /[M]* = /* M We denote the field of fractions of

/[M] by /(M) This field is rational over / of transcendence degree r

Now suppose that π acts faithfully on / äs a group of field
automorphisms, and that M has a π-module structure We make π
act on /[M] by

σ( Σ λ<η m)= Σ σΟυ ff(m)> for σεπ>
meM m^M

if lmel, and ΑΜΦΟ for only fmitely many meM The action is extended

to l(M) by σ(<ϊΖ7-1) = σ(α)σ(̂ )-1, for a, *>e/[M], and 6ΦΟ

In Theorem (17) we give a necessary and sufficient condition, m

terms of M, that 1(Μ)π be stably rational over Γ, cf [45, 10] Theorem (2 6)

states that m a special Situation this condition even implies that 1(Μ)π

is rational over /"

Remark that 1(Μ)π is rational over Γ if and only if a certam torus,

defmed over Γ and Splitting over /, is rational over Γ, cf [38] This will

not be used m the sequel

We usually wnte the group law in M additively, although M is a

sub-7r-module of the multiphcative group of i (M)

(l 3) Proposition [43] Lei W be an l-vector space on which π acts

semilmearly, ι e W is a π-module and σ(λ\ν) = (σλ) (σ w) for all σεπ, Ae/

and weW Then WK contams an l-basis for W

Prooj Put S = (£ σ)εΖ[π] We show that SWc Wn contams an /-
σεπ

basis by provmg that any /-linear function φ W~^l annihilatmg SW

must be the zero function Fix such a. φ, and fix weW Ther for every

Ae/ we have

By the linear mdependence of field automorphisms [2, Ch V, § 7 5] we

conclude φ (σ w) = 0 for all σ e n In particular φ ( w) = 0, and ( l 3) follows Q

(l 4) Proposition [30] Let N be a fmitely generated permutation module

over π Then 1(Ν)π is rational over Γ

Proof Let {xl , ,\}c~- l(N)* be a Z-basis for N which is permuted by π

Applymg (J 3) to W= l £ / x] <=l(N) we find yt, , yrel(N)« such that

l(y„ , yr) = / (N) It follows that /(JV)« = /"ö/1> ,yr) D
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(1.5) Proposition. // N is a permutation-projective π-module, and

0— »M!— >M2^,/V— >0 is an exact sequence of ßnitely generated Z-free
π-modules, then the fields l(M2f and /(M̂ Nf are isomorphic over ln.

Prooj. The field /(Mt) is naturally contained in l(M2). Let l(M̂ )* ·

M 2 c l(M2)* be the subgroup generated by l(MJ* and M2 . Consider the

exact sequence of π-modules

where the map /: l (M,)* · M2— > JV is defined by

f(l-m) = (mmodM1)eN, for λ€Ϊ(Μι)* and meM2.

By Hubert Theorem 90 and (1.2)(c) this exact sequence splits. The

resulting π-homomorphism N—>l(M2)* easily yields a field isomorphism

/(M!®7V)̂ /(M2) which respects the action of π, and (1.5) follows.

Compare [39, Prop. 1.2.2]. G

(1.6) Proposition. // N is a permutation module over π, and

is an exact sequence of Jinitely generated Z-free π-modules, then 1(Μ2)π

is rational over

Proof. From (1.5) we get /(Μ2)π̂ /(Μ1ΘΛΓ)π, and (1.4), applied to

the base field /(Mt) instead of /, says that /(Λ̂ φΛ/71 is rational over
l(Mj)". D

(1.7) Theorem [45, 10]. Let M be a Jinitely generated Z-free π-module.

Then 1(Μ)π is stably rational over Ιπ ij and only if there is an exact

sequence of π-modules
0-^·Μ^Ν2~>Νι^Ο

in which N1 and N2 are finitely generated permutation modules.

Prooj. If 0— >M— >Ν2~^·Ν1— *0 is an exact sequence äs in the theorem,
then 1(Ν2)π is rational over both /" and /(Μ)π, by (1.6). This proves the
"if'-part.

Next suppose l(Mf is stably rational over l", so

where {x1 , . . . , xj is algebraically independent over 1(Μ)π and {y1,...,yr }

is algebraically independent over /". Let π act on

via the first factor. Put

,..., xj and R2 = l[y1,...,yr+J
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inside the field l(M)(x1, ,xs) By [44, Lemma 8] there are nonzero
elements a^R^ and a2eR2 such that Ät[af l~\=R2\_a2 *], call this last
ring R Lemma 7 of [44] teils us that there are exact sequences of π-
modules

0->R*->.R*-^JV1->0

0 ->#*-> .R *-*ΛΓ2-+0

in which Nt and N2 are fimtely generated permutation modules

Replacmg R*, Rf and R* by R*/l*, R*/l* and R*//* we get

0^ 0 ->R*//* ->N2^0

The theorem follows Q

(l 8) Corollary. Lei M be a fimtely generated "L-free π-module, and

suppose H1(p,M) = 0 for every subgroup ρ<=π Then /(M)" is stably

rational over l" if and only if M φ N1 S N2 for certam fimtely generated

permutation modules N1 and N2

Proof (l 7) and (l 2)(c) Π

2. A Special Case

In this section π is a fmite abehan group, and / is a field on which π

acts faithfully äs a group of field aulomorphisms If π" c π is a subgroup,

then we call π' = π/π" a factor group of π The canonical map π—* π'

allows us to view every π'-module äs a π-module m a natural way
Let p be a cyclic factor group of π Then there is a natural surjective

ring homomorphism Z [π] — > Z (p) (see the mtroduction for the defmition

of Z (p)), which allows us to view every Z(p)-module äs a π-module
If M is a π-module, we put

) = (Μ®πΖ(ρ))/{6ΐ6ηΊ6ηΐ8 of fmite additive order}

Then Ρπ p is a functor from the categcry of π-modules to the category

of torsion free Z (p) modules, left adjomt to an obvious functor the

other way

(2 1) Proposition. Let S (π) denote the set of cyclic factor groups of π,

and let π' be a factor group of π Tfren there is a natural mclusion S (π1) <= S (π),

and for every π'-module M we have

(i) (/ peS(n'\ then Fn ρ(Μ)̂ Ρπ ,p(M) over Z (p),

(n) ifpeS(n) but ρφ8(π'), then Ρπ Ρ(Μ) = 0

Proof The mclusion 5(π')<=5(π) is induced by the surjection π ->π'

Assertion (i) is clear from Μ®πΖ[π']̂ Μ We prove (u) Smce ρφ&(π'),
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we can choose an element σ ε π, which has image l in π' while its image

σ* in p is Φ1. Then σ acts trivially on M, so

where σ* — l is a nonzero element of Z (p). Since σ* — l divides some

positive integer in Z(p), it follows that M® „Z (p) is torsion, so

) = 0. D

This proposition says that Ρπ<ρ does not depend on π, in a certain

sense. From now on we will write Fp instead of Fn >p.

(2.2) Proposition. Lei N be a π-module, and M<=. N a sub-n-module such

that N /M is a torsion group. Then F (M) is isomorphic to the image of M

under the natural map N-+Fp(N), jor every cyclic factor group p of n.

Proof. Let J be the kernel of Ζ[π]— >Z(p). Then for every π-module

P there is a natural surjection P— >Fp(P) with kernel

{peP\BkeZ, fc + O: k-peJ-P}.

Since N/M is torsion, we have

{meM\3keZ,k + 0: k· meJ · M} = Mn{neN\3keZ, &ΦΟ: k-neJ-N},

and (2.2) follows. D

(2.3) Proposition. // N is a permutation module over π, then Fp(N) is

Z(p)-free for every cyclic factor group p of π.

Proof. It suffices to treat the case ΛΓ = Ζ[π'], where π' is a factor

group of π. Then Fp(N)̂ Z(p) or Fp(N) = 0, by (2.1). D

(2.4) Theorem. Let π be a jinite cyclic group, and M a finitely generated

projective π-module. Then the fields /(Μ)π and l(@Fp(M))n are isomorphic
p

over P; here p ranges over the sei oj cyclic factor groups of π.

The proof of this theorem is given at the end of this section. An

analogous result is given in [10]. Compare also [11].

(2.5) Corollary. Lei π be a finite abelian group, and let M be a finitely

generated π-module of the form

where each Μπ, is a projective π'-module, and where π' ranges over the sei

of cyclic factor groups of π. Then

l(MT̂ l(@Fp(M)}n over Γ,
p

with p ranging over the set of cyclic factor groups oj n.
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Prooj. Let π' = π/π" be a cyclic factor group of π. Applying (2.4) to

the cyclic group π', the module Μπ, and the field /"", we find, using (2.1):

(Μ,.))' over Γ.

Tensoring with / over Γ gives an /-isomorphism

p

which respects the action of π. Combination yields an /-isomorphism

which respects the action of π, and (2.5) follows. D

(2.6) Theorem. Let π be a jinite abelian group, and let M be a finitely

generated π-module of the form

Μ=0Μπ,,
π'

where each Μπ, is a projective π'-module, and where π' ranges over the set

of cyclic factor groups oj π. Then the jollowing three Statements are

equivalent:

(a) the jield 1(Μ)π is rational over Ιπ;

(b) the field l(M)n is stably rational over l";

(c) for every cyclic factor group p of π, the Z (p)-module Fp (M) is free.

Proof. The implication (a) => (b) is obvious

(b) => (c). Since M is permutation-projective over π, we can apply

(1.8). Using (2.3) we find that for every cyclic factor group p of π there exist

fmitely generated free Z(p)-modules ̂  and P2 such that Fp(M)@Pl̂ P2

over Z (p). Since Z (p) is a Dedekind doniain, this impiies that Fp(M) is

Z (p)-free, äs required.

(c) => (a). Let r (π') be the rank of Λίπ, over Z [π'], and put

N=®7L\n'J(n'\
n'

Let p be a cyclic factor group of π. Then the Z(p)-modules Fp(M) and

Fp(N) are isomorphic; in fact, by assumption and by (2.3), they are both

Z(p)-free of rank £ r (π'), the sum ranging over those cyclic factor groups
π'

π' of π for which p is a factor group of π'. Therefore



308 H W Lenstra Jr

so 1(Μ)π̂ Ι(Ν)π by a twofold apphcation of (2 5) But 1(Ν)π is rational

over f, by (l 4), and (a) follows 0

The remamder of this section is devoted to the proof of Theorem (2 4)

We assume that π is a cyclic group of order m with generator τ The set

of positive drvisors of m is denoted by E (m) For deE(m), the umque

factor group of π of order d is denoted by nd If C<=E(m) is a subset, then

we write Φ0= f] Φά, for example, $E(m) = Xm — l If M is a π-module and
deC

CcE(m), we write Mc = Μ/Φε(τ) Μ

(2 7) Lemma. // M ;s π-projective, and de E (m), then MEW is permutation-

projective over π

Proof The module ME(d) ̂  M ®π Z QtJ is π,,-projective, hence a direct

summand of ZfjtJ' for some teZ, tS:0 Q

(28) Lemma. Lei M be n-projective, and C, C'cE(m) disjoint subsets

Then there is an exact sequence of π-modules

0->Mc-*MCuC->Mc^O

Proof The map MCuC —> Mc is the natural one, and the map

Mc->MCuC is mduced by multiphcation with Φ€ (τ) For Μ = Ζ[π],

exactness of the resultmg sequence is easily checked The general case

follows since everythmg preserves direct sums D

Let G (m) denote the set of all equivalence relaüons on E (m) For
ueG(m), we denote by [M] the set of non-empty equivalence classes of M
Let S (m) er G (m) χ G (m) be the set of (M, v)eG(m) χ G (m) for which

(29) there exist deE(m) and De [u], such that E(d)aD, E(d)3=D and

[v] = {E(d\ D̂ E(d], C\Ce[u],

(2 10) Lemma. The graph (G(m), S(m)) n connected

Proof The Statement means that for all u, ueG(m) there is a fimte

sequence («,)"=0 of elements of G (m) such that u0 — u and ua = v, and such

that for every j with Q^j<a, either (u}, wJ+1)eS(m) or (M^+I, w )eS(m)

We call such a sequence a "path from u to p"

Let the two "trivial" equivalence relaüons i(m), w(m)eG(m) be
defmed by

[z(w)] = {{rf}|i/e.E(m)} and [w(m)] = {£(m)}

Clearly, it is sufficient to show that for each ueG(m) there is a path from
u to t (m) This is done by mduction on m For fixed m, we use mduction

If n(u)=0 then u = z(/n) and obviously the required path exists
Suppose that n(u)>0, and let e be the smallest element of E (m) for which
there exists a class De [M] with eeD and \D\> l Clearly e<m Therefore,
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the induction hypothesis on m may be applied, yielding a path (υ$=0 from

i(e) to w(e) in the graph (G(e),S(e)). For O^j^b, let D}e\v^ be such

that eeDr Define û Gfa), for 0̂ ;̂ 2fe + I, by

ifO^;^&, and

if b + 1 ̂j^2b + 1. We leave it to the reader to check that (w,)̂ 1 is a

well defined path from u = u0 to w26+1, and that

Cw2h+1] = {öM4, {4} υ (M MD}).

It follows that n(u21)+1) = n(u)— l, and the induction hypothesis on n(u)

yields a path from u26+1 to i(m). Combination yields a path from u to i' (m).

This proves the lemma. D

Let / and M be äs in (2.4). For weG(m) we put M(u)= ® Mc.
Ce[a]

(2.11) Lemma. Let w, ueG(m). TTie« 1(Μ(η))π̂ Ι(Μ(ν))π over l".

Proof. By Lemma (2.10) we may assume that (2.9) holds. Then by (2.8)

there is an exact sequence of π-modules

0 -> MDX E(d) -* MD -> MEW -> 0 .

Adding a summand T ,_.
Λ/= (4) Mc

Cs

yields an exact sequence

These modules are Z-free, since M is projective. Using (2.7) and (1.5)

we get an isomorphism of fields

over Γ. Because of (2.9) this is exactly the same äs
over Γ. Π

Proo/ o/ (2.4). Let i (m), w(m)eG(m) be äs in the proof of (2.10). Then

M(i(m)} = ® Μ/Φα(τ) M^
d\m p

So (2.4) follows from (2.11) if we put u = i(m) and t> = w(m). D
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Remark. Theorem (2.4) can be generalized to the case M is per-

mutation-projective over π. The only modification in the proof is that

for CcE(m) the module Mc has to be redefined äs follows:

Mc = M/{xeM|3fceZ, k + 0: k· χεΦ0(τ)· M},

and that C' in (2.8) must be equal to E(d), for some de E (m).

3. The Modules Ig and Jq

Let p be a prime number, and let q=ps be a power of p, with s 3; 1.

In this section / denotes a field of characteristic Φ ρ which contains a

primitive q-ih root of unity ζβ, and π is a finite abelian group of auto-

morphisms of 1. We put k = T and π̂ ^̂ ε̂ σ̂ ζ̂̂ Ο̂αίμ/̂ )).

Let /? (g) = Gal (&(£,,)/&) = π/π (4). The map 7r->(Z/qZ)*, which sends τ

to (f modg) if τ(ζ?) = ̂, gives rise to an injective group homomorphism

φβ: p(q)̂ > (Z/qZ)*. This map makes Z/qZ into a p (<jf)-module and hence

into a π-module.

We consider first the case when p(q) is non-cyclic, and afterwards

the case when p(q) is cyclic.

So assume that p(q) is non-cyclic. Then q is divisible by 8. Put

C(g) = (Z/flZ)\{0}, and let ZC(«> be a free abelian group of rank q-l

with Z-basis {ec\ceC(q)}. We make ZC(9> into a p(i/)-module by

a(ec) = eac, for aep(q) and ceC(q). Then the group homomorphism

ZC(q)-*Z/qZ, mapping ec to c for ceC(q), is p(̂ )-linear, and we call its

kernel Iq. So there is an exact sequence of p (q)-modules

(3.1) Proposition. For every subgroup π'<=π we have H1(n',Iq) = Q.

Proof. Obvious from the exact sequence of cohomology. G

(3.2) Proposition. For some subgroup π'<=π we have Η~~1(π',Ι )ΦΟ.

Prooj (sketch). Since lq is torsion free, we may assume n = p(q). We

assumed that π is non-cyclic, so there is a subgroup π' with φ [π'] =

{l, «-l, M + l, -l}<=Z/qZ, where u=\q. We are going to" prove

H-1 (π', Iq)̂ Z/2 Z.

Put C={1,M-1,M,M+1,-l}cC(q)cZ/gZ. Then Zc is a sub-π'-
module of Zc<i) in an obvious way, and restricting the map ZC(i)—>Z/qZ

to Zc we get an exact sequence of π'-modules

where M = Zcr>Iq. The exact sequence of cohomology easily yields

H1 (π", Μ)=0 for all five subgroups π"<=.π', and an explicit computation
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inside M shows H'1 (π', M) ̂  Z/2 Z. By diagram chasing one gets an

exact sequence

which splits by ( l .2). Using ( l . 1) we find H~ 1 (π', /„) ̂  Z/2 Z, äs required. D

For the remainder of this section we assume p (q) is cyclic. The ring
homomorphism Z [p (g)] ->Z/gZ induced by <j>q is p (g)-linear, and we
call its kernel Jq . So there is an exact sequence of p (g)-modules

(3.3) Proposition [10]. Let p(q) be cyclic. Then Jq is a projective p(q)-
module excepl ij (3.4) holds:

(3.4) g = 0mod4 and </>e [p (g)] = { + l, - l}c(Z/gZ)*.

Proof. Suppose (3.4) does not hold. Let p = </)q [p (g)] c (Z/q Z)* and
n — \p\ — \p(q)\. Let pic.(Z/pqi)* be the inverse image of p under the
canonical map (Z/pqZ)* — > (Z/q Z)*. Then p1 has order «p, and we claim
that p1 is cyclic.

Suppose, in fact, that p1 is non-cyclic. Then (Z/pqZ)* is non-cyclic,
so p = 2 and gsOmod4. Moreover, (— l modpqjepj, so — lep. But
the only cyclic subgroup of (Z/qZ)* containing —l is { + !,—!}, so
p = { + 1, - l }. Hence (3.4) holds, contradicting our assumption. We
conclude that pi is cyclic.

Choose t e Z such that (i mod p q) generates p± . Since | p1 \ > n, we have
Z" φ l mod p g. Clearly, (i mod g) generates p, so t" = l mod q. Hence

t"—\=a-q, where a and q are relatively prime.

Let rep(q) be such that φ9(τ) — (ί modq). Then τ generates p(q\

and the Z [p (g)] -ideal Jq is generated bv τ — t and q. Denote by M the

Z[p(g)]-ideal generated by τ-ί and a. Then Je + M = Z [p (g)], so

J - M. Hence we have an exact sequence of Z[p(g)]-modules

where the map J?®M->Z[p(g)] is defined by (/, m) H-»;- m. The ideal

J,-M is generated by the four elements {(τ-ί)2, α(τ-ί), q(T-t),aq}

where aq = t"-r". It follows that J„ · M = Z [p (g)] · (τ - i) is a free Z [p (<?)]-

module, and since the above sequence splits we find that Jq is p(q)-

projective. Q

Remark. If (3.4) holds, then Jq is not projective. In fact, suppose

q = 0mod4 and p (<?)={ l, τ}, where φ9(τ)=-1. Then Jq has a Z-basis

{1+τ,|ί-|-ί/·τ}, so 7e = Z®Z'; here p (g) acts trivially on Z, while

the p (g)-module Z' has underlying abelian group Z and p(g)-action

τ . m= —m, for meZ.

2l Invenüones math , Vol 25
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(3.5) Proposition. Suppose q is a power of 1 and p(q) is cyclic. Then

l(Jq)" is rational over l".

Prooj. Replacing l by Γ(ϊ) we may assume n — p(q). Suppose first that

(3.4) holds. Then by the above remark l(Jq) = l(x,y), where τ(χ) — χ and

x(y) = y~l; here τ denotes the non-trivial element of π. Choose ael with

τ(α)φα. Then l(x, y)lt = l'l(x, z), where z = (a.y + T(a.))/(y+l). So in this

case l(Jq)" is rational over Γ.

Suppose now that (3.4) does not hold. By (3.3), the π-module Jq is

projective, so we are in a position to apply (2.6). Hence we need only

check that Fp(Ĵ  is Z(p)-free for every factor group p of π.

So let p Φ {1} be a factor group of π of ordcr 1'. Since Jq has index q

in Z [π], it follows from (2.2) that Fp(Jq) may be considered äs a sub-
module of 2-power index in ̂(Ζ[π])̂ Ζ(ρ). But Z(/o)sZK2r], and
every ideal of 2-power index in Z[̂ 2J is generated by the corresponding

power of l — £2r, and is therefore free. It follows that Fp(Jq) is Z(/?)-free,

äs required D

If K is a subfield of / which is a cyclic extension of k, then Gal(K/k)
is a cyclic factor group of π, and we will write FK instead of

(3.6) Proposition. Suppose q is odd. Let K be an intermediate field

kcKc.1 such that pK = Gal(K/k) is cyclic. Let ακ( — ) be äs in the intro-
duction. Then

FK Vq) = o* (Z/« Z) äs Z (pK)-modules if Kck(Q,

This is proved after the proof of (3.7).

(3.7) Lemma. Let q = p" be odd, let τ be a generator oj
G<a(k(Q/k), and choose ίεΖ such that τ(£,) = ζ. We denote the order

of (t mod p) e (Z/p Z)* by f, and we put pr = g.c.d.(q, tf~\); here reZ and

In this Situation, any intermediate field k<=Kck^) is uniquely

determined by its degree [K: k] over k. Moreover, if K is such a field,

then pK = Gal(K/k) is a cyclic group, generated by the imaee τν of τ in oj
rrr , ° Λ. J r K. '
We have:

(i) ij K = /c(Cp), then K = fc(Cp.) for all l^i^r, the degree [_K:k]

equals f, and Ρκ(̂ ) is, äs a Z(pK)-module, isomorphic to the r-th ideal
power oj the Z(pK)-ideal generated by p and rK-teZ(pK);

(ii) ij K = fc(fpl) with r<i^s, then [_K:k] = f · p'-', and FK(J)is, äs a
Z(pK)-module, isomorphic to the Z(pK)-ideal generated by p and τκ-ί;

(iii) for all other X<=fc(C,X we have FK(Jq)̂ Z(pK) äs Z(pK)-modules.
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(3.8) Lemma. For meZ, let ord(m) denote the number of factors p in m.
Let t and f be äs in (3.7). Then:

(i) θΓά(Φ/(ί)) = θΓα(ί/-1)>0,
θΓα(Φ/ρ,(ί))= l far all ieZ, i>0,

ord (ΦΛ (r)) = 0 far all other deZ,d>Q.

(ii) ord(tm- 1) = 0 ifmeZ, m>0 and ηιφΟ modf,

ord(im-l) = ord(t/-l) + ord(m) ifmeZ, m>0 andm = Q modf.

Proof of (3.8). See [l, Lemma 1]. G

Proof of (3.7). Since &(ζβ) is a cyclic extension of k, it is clear that an

intermediate field K is determined by its degree over k, and that ρκ is

generated by the image of τ.

Let 1<Ξί<Ξ5. By Galois theory, [/c((p,):fc] is the smallest positive

integer m for which τ"1 (£p, ) = {,,<, i.e., for which im-lsOmodp'. From

·. ; , , = p , -

if r<i'gs. This proves the Statements concerning the degrees [/c(Cpl):/c].

In particular, [*(ί,):λ] =/·?-'.
Now let fccKc:fc(Cg) be such that [K:fc] = d, where </|/-ps-r.

Tensoring the exact sequence defming Je with Z(pK) over Z[p(q)], we

find an exact sequence of Z(pK)-modules

p(„ Z (ρκ) -* (Z/« Z) ®p(g) Z (ρκ) -v 0 .

Since J is projective, the first two modules in this sequence are FK(Jq)

and FK(Z[p(q)])sZ(/9K), and the first arrow is injective by (2.2). Using

Z (ρκ) = Z [p (q}~]̂ d (τ) Z [p (i?)] we find for the cokernel :

) · (Z/g Z)

= Z/(g-Z + *„(«)· Z)

since τ acts on Z/g Z äs multiplication by i.

Summarizing, we have an exact sequence of Z(pjj-)-modules

0 -» FK (J,) -* Z (ρκ) -v Z/(i · Z + Φ, (i) · Z) -> 0

where the map Z(pK)̂ Z/(q · Ζ + ΦΛ(ί)· Ζ) sends τκ to the residue

class of t.

In case (iii) we have g.c.d.(q, <Pä(t))=l, by (3.8) (i), so ̂ (Ĵ ) is iso-
morphic to Z(pK). In case (ii), we have g.c.d.(q, ΦΛ(ί)) = ρ, by (3.8) (i),

so FK(Jq) is isomorphic to (p, τκ — t)c:Z(pK). Finally, in case (i) we have

g.c.d.(<7,<Z>,,(i))=/, «o Z(PK)/FK(Jq) = z/Prz' is a local ring. Therefore
FK(Jg) is an ideal power of (p, τκ — t), and Computing norms we find that

the exponent has to be r. D
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Prooj of (3.6). For K$k(Q we have FK(Jq) = 0 by (2.1). Therefore it
suffices to consider subfields Kck(Cq). These fields are described in
(3.7), and for each of them FK(Jq) is computed. Comparing the outcome
with the definition of aK(Z/qZ) (see introducüon) one finds that
FK (Jq) s <% (Z/q Z), äs required. D

4. A Reduction

Let k be a field, and A a finite abelian group. The field kA has
been defined in the introduction. We write A^P@B, such that |Β[φΟ
mod char(fc) while |P| is a power of char(/c).

(4.1) Proposition. The field kA is k-isomorphic to α rational field extension

of kB.

Before proving (4.1) we state two lemmas.

(4.2) Lemma. Let K0 a K^ a · · · a Kd be a chain qf fields of characteristic

p 4=0, such that for each i with l^i^d there is an element uteKt such that

Kl — Kl_-l (M,)· Let P be a finite p-group of field automorphisms of Kd such

that

(i) the action of P on K0 is trivial;

(ii) a(ut) — u,eKl_1 for all σεΡ and 15Ξ;'5Ξ<1

Then Kpd=K0(z},...,zd) for some zit ...,zdeKä.

Prooj of (4.2). This lemma is Satz 2 of [16]. For a short proof, see
[33]. D

(4.3) Lemma. Let K be a field of characteristic p=t=0, and let P be a
finite p-group. Let M be a nonzero K[P^-module. Then ΜΡΦΟ.

Proof. See [42, Ch. IX, Th. 2; 6, Ch. IV, § 9; 33]. D

Proof of (4.1). Put /? = char(fc). Clearly we may assume p=j=0.

We denote by V the /c-vector space inside k({xg\geA}) generated by

{xe\geA}. Clearly, V is a /c[̂ ]-module isomorphic to the left module

k[A~\. Let WcVbe the subspace W=V. This is a fc [5]-module iso-

morphic to k [B]. Therefore, to prove (4.1) it suffices to show that k(V)A

is rational over k( W}B; here k(W) denotes the field generated by k and W

inside k(V) = k({xg\geA}). The codimension of H^in V is denoted by d;

By U we denote the fc(W)-vector space spanned by V inside k(V).

It is easy to see that U has dimension d+1 over k (W), that l e U, and that

B acts semilinearly on U. Put T= UB. Then from (1.3) it follows that Tis

a (d + l)-diraensional vector space over k(W)B with leT.

The definition of Γ implies σΤ=Τ for aeP, so T is a k(W}B[P~\-

module. We choose a sequence of fc(W)B[P]-submodules Υ of T, for
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ö^i^d, such that Y0 = k(W)B l and such that for each ι with l^i^d
we have

y,_icYj, and yyy,^ is a one-dimensional vector space over k(W)B

on which P acts tnvially

Such a sequence (1Q?=0 is easily constructed by mduction on ι just apply

(4 3) to M = T/y,_ j to find y, Of course, Fd = Γ

Let uleYl be such that F, äs a fc(W)B- vector space is generated by
F,_i and u„ for l^i^d Let K, be the field generated by k(W)B and y„
for 0 g ι g d Then K0 = fe ( MK)B and we claim

(44) Kd = k(V)B

Assume (44) for a moment The conditions of (42) are satisfied, by

construction, so
Λ-((=Λ.Ο(.ΖΙ, , zd;

for some zt, , zdeKd, or, what is the same,

Countmg transcendence degrees we conclude that k(V)A is rational

over k(W)B, äs required

It remains to prove (4 4) By definition,

so the mclusion Kd<=.k(V)B is obvious We prove equality by a degree
calculation

Usmg (13) we choose a ß-mvanant k(W)-basis {b0, ,bd] for U
Then {b0, , hd} is a k(W)B-basis for t/s so

o, Λ)
will l G

Therefore

it follows that Kd = k(V)B This completes the proof of (4 1) D

5. Proof of the Main Theorem

Let fe be a field and A a fmite abelian group We wnte A^

äs m the precedmg section By e we denote the exponent of B, and we
put /=fe(CJ The Galois group of / over k is called π As is well known,
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the character group ü = Hom(ß, /*) is, äs an abehan group, isomorphic
to B (non-canomcally) We make D mto a π-module by (od)(g) = a(d(g))
for σε π, de i> and geB Let Zß be a free abehan group with {ed\deD}
äs a Z-basis, and make ZD mto a permutation module over nbyaed = ead,
for σεπ and de£> The group homomorphism ZD—>D sendmg ed to d,
for deD, is π-lmear, and we call its kernel J So we have an exact sequence

of π-modules

(5 1) Proposition [12,31] The fields kB and l(J)n are isomorphic over

Proo/LeU(x) = i({xg|geß})andk(x) = k({xg|geß}) First we descnbe

For deD, let

geB

Then l(x)—l({yd\deD}\ and the acüon of ß on l({yd\deD}) is given by

g(yii) = d(g) yd, for geB and deD

Let Fc/(x)* be the multiplicative subgroup generated by {yd\deD}
Clearly, F is Z-free of rank |Z)| = |ß| Defme the homomorphism φ F~>D
by sendmg yd to d, for deD Then

for yef and geB

So if _yeker(</i)) then g(y) = y for all yeB, i e ye/B This means

The index of ker((/)) m F equals |D| Therefore we find, by extractmg

roots successively

[/(F) /(k

But [I(F) lg] = \D\ by Galois theory, so we conclude /(ker (</>)) =/B Smce

a Z-basis for ker(̂ ) is algebraically mdependent over /, the field /(ker($))

is isomorphic to the field of fractions of the group ring of ker((/>) ovei /

This removes a shght ambiguity m our notations, cf Section l

Next we let come m k We let π act on /(x)s/ ®Λ k(x) via the first

factor Then the actions of π and B on l(x) commute, so

One easily checks

ff()=y for σεπ and
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so F is a sub-vr-module of l(x)*, andF^Z0. The map φ: F^D is π-linear,

so ker(</>) is a sub-Ti-module off, and clearly ker(</>)̂ J. It follows that

there is an /-isomorphism of fields /B=/(ker (<£))£/(./) which respects

the action of π. Hence there is an isomorphism

over k = P, äs required. D

We write
B ̂ 0 (Z/q Z)"(9) (äs abelian groups)

i

with non-negative integers n(q), where q ranges over the set of prime
powers > 1. We define the π-modules /1; /2 and /3 by

q, q is odd

I2= ® T'*
<1, p(q) is non-cychc

/3= ® -
g, i/ is even, p(̂ ) is cyclic

(See Section 3 for the definitions of Iq, Jq and p(q).) Finally, we put

(5.2) Proposition. The field l(J)n is l" -isomorphe to α rational extension

ofl(I)\

Prooj. By a π-set we mean a set E o n which π acts äs a group of
permutations (the action need not be faithful). The corresponding
permutation module is denoted by Zr. A subset £' of a π-set is called a
π-subset if a(e')eE' for all σεπ and e'e.E'.

The decomposition

gives rise to a decomposition of Tc-modules

D s:® (Z/q Z)"(e),
9

each direct summand Z/g Z being a π-module äs described in Section 3.

We first consider a direct summand Z/q Z for which p(q) is non-
cyclic. If Z/qZ-+D is an injective π-homomorphism identifying Z/qZ
with one of the direct summands, then the resulting injection of π-sets

C(q)<=Z/qZ-+D (see Section 3 for the defmition of C(q)) give& rise to

a π-linear map ZC(q}-+ ZD. It is easily checked that the following diagram
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with exact rows is then commutative

0 > / „ Zc<«> > Z/q Z -

Analogously, if p(q) is cychc, and we have a π-homomorphism Z/qZ—*L

which identifies Z/qZ with one of the direct summands, then an mjective

map of π-sets p(q)—>(Z/qZ)*cZ/qZ->D is mduced (here the map

p(q)—+(Z/qZ)* is the map <j>q defmed in Section 3) The resultmg π

homomorphism Z[/?(q)]=Zp(i)-*ZD then makes the followmg diagram

with exact rows commutative

-> Zß » D

So with each direct summand Z/qZ of D we have associated a diagram,
and all these diagrams have the same second row Taking the direct sum
of all first rows we find the commutative diagram with exact rows

0 --- > j --- > z° -- > D -- > 0

where E is some π-set which is a disjomt union of π-sets of the form
C(q) and p(q), with certam multiphcities Smce Q£C(q)cZ/qZ and

0<£0„[/'(<5')]c:Z/i7Z, the Images of these π-sets in D do not overlap

This means that E may be considered äs a π-subset of D, and that the
map ZL— >· ZD is mjective and has a cokernel 7V whicn is itself a permuta-

tion module over π Smce the second vertical arrow in the above diagrarn

is an isomorphism, we get an exact sequence of π-modules

m which N is a permutation module From (l 6) it folkws that l(J)n is

Γ-isomorphic to a rational field extension of /(/®/3)π Applying (3 S)

we find that /(/®/3f is rational over 1(1)" This proves (5 2) Q

(5 3) Proposition. The field kA is k-isomorphic to a rational field extemion

of 1(1)'
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Proof. Combine (4.1), (5.1) and (5.2). D

(5.4) Proposition. For every subgroup π' <=π we have H1 (π1, /) = 0.

Proof. This follows from (3.1), (3.3) and the definition of /. Q

(5.5) Proposition. Let kcKd be an intermediate field such that ρκ =

Gal(K/k) is cyclic, Then FK(I,) is Z(pK)-free if and only if the Z(pK)-ideal

oK(A) is principal

Proof. This is immediate from (3.6), the definitions of /t and ακ(̂ 4),

and the following fact on modules over a Dedekind domain: if α1; ..., α,

are nonzero ideals in a Dedekind domain R, then the direct sum

QI θ · · · Θ α( is J?-free if and only if the ideal product o, . . . a( <= R is a

principal ideal [18]. D

(5.6) Proposition. The following three assertions are equivalent:

(a) the field 1(1̂  is rational over Ιπ;

(b) the jield 1(1̂  is stably rational over Γ;

(c) condition (i) of the main theorem is satisfied.

Proof. From the definitions of l̂  and (3.3) it is clear that (2.6) may

be applied to M = /j. Therefore it suffices to prove that condition (c)

of (2.6), with M = /15 is equivalent to condition (i) of the main theorem.

But this is precisely (5.5). D

Proof of the Main Theorem. First suppose kA is rational over k.

Then /(/)" is stably rational over k, by (5.3). Using (5.4) and (1.8) we find

I®N1^N2 for some permutation modules Nl and N2 over π. From (1.1)

and (3.2) we conclude that n(g) = 0 if p(q) is non-cyclic, that is, we have

proved (ii) of the main theorem. It follows that / = /t, and applying (5.6)

we find that (i) is also satisfied.
Secondly, assume that (i) and (ii) of the main theorem hold. Then

/ = /! and (5.6) teils us that /(/)* is rational over ln = k. Application of (5.3)

concludes the proof. D

(5.7) Remark. Note that the proof implies: if kA is stably rational

over k, then kA is rational over k. for abelian A.

6. Supplementary Results

Two extension fields K and L of a field k are called stably isomorphic

over k if there exist rational field extensions Kc,K' and Lei L' of finite

transcendence degree, such that K' and L are fc-isomorphic.

Let k be a field, and A and A' finite abelian groups. Write

9

just äs we did for A in Sections 4 and 5.
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(6.1) Theorem. Let k be a field, and A and A' jinite abelian groups.
Then kA and kA, are stably isomorphic over k if and only if the following
two conditions are satisjied:

(i) for every Intermediate field kcKcfccycl for which (0.1) holds, the
Z(pK)-ideals aK(A) and aK(A') are in the same ideal class;

(ii) ij char(fc)=|=2, then n(q) = n'(q) for every power of two q = 2s for
which the Calais group of k^q) over k is non-cyclic.

Proof. Analogous to the proof of the main theorem. D

Following Burnside, we consider a generalization of the problem
posed in the introduction. Let k be a field, A a finite group, and V a
finitely generated faithful fc[/4]-module. The Symmetrie algebra of V
over k is denoted by Sk(V). The field of fractions k(V) of Sk(V) is rational
over k of transcendence degree dimk(V), and the /4-action on V induces
an action of A on k(V) äs a group of field automorphisms over k. We ask
under which conditions k(V)A is rational over k. If Fhas a k-basis which
is permuted by A, this is the question of the introduction. For A abelian
and F=fc[.4], äs k [X]-module, the answer is given by the main theorem.
Theorem (6.4) below gives a partial solution for abelian A.

(6.2) Proposition. Let V be α finitely generated faithful k[A]-module,
and Wc V a faithful k\_A]-submodule. Then k(V)A is rational over k(W)A.

Proof. This follows easily from (1.3). Compare [33]. Q

(6.3) Proposition. Suppo&e A^P@B, where |P| is a power of char(k)

and |Β|ΦΟ modchar(fc). Let V be a finitely generated faith/ul k[A~]-

module. Then Vp is a faithful k^B^-module, and k(V}A is rational over

k(Vp}B.

Proof. We show that Vp is a faithful k[ß]-module. Let 5eß, with
b Φ 1. Then (b - 1) V is a nonzero P-module, so by (4.3) there is a nonzero
element we(b—l) Fr> Vp, say w = (b— 1) v. Let m be the order of b. Then

b - w = w would imply m- w = (bm~l + ---+b + l) w = (bm~ 1)υ = 0, but

m · l ΦΟ in k, so w = 0, contradiction. Hence b-w^w, and Vp is faithful

over k[ß]. The proof that k(V)A is rational over k(Vpf follows exactly
the same lines äs the proof of (4. l). D

(6.4) Theorem. Let k be a field, A a finite abelian group, and V a finitely
generated faithful k \_Aj-module. Then k(V)A is stably rational over k if
and only if kA in rational over k. Moreover, ij dimk(F)̂ |.4|, then k(V)A
is rational over k if and only if k(V)A is stably rational over k.

Proof. Write A-P@B äs in (6.3). Combination of (6.3) and (6.2)
(with W= Vp) shows that k(V)A and k(V}B are k-isomorphic, so it suffices
to do the case A = B, i.e. |Λ|φΟ modchar(fc).



Rational Functions Invariant under a Fmite Abelian Group 321

By (6.2), the field k(V ®k^A])A is rational over both k(V}A and kA,

so k(V)A and kA are stably isomorphic over k. Also, by (5.7), the field kA

is rational over k if and only if it is stably rational over k. We conclude

that k(V)A is stably rational over k if and only if kA is rational over k.
t

Finally, assume αίιηΛ(Κ)̂ |.ί4|. We may write V^@ V"̂  over fc[/4],
i=l

where each V( is an irreducible /c[/l]-module, n(i) is a positive integer,
(

and Vt and V} are non -isomorphic for i+j. Put W=@Vt. Then W is a
i = l

faithful k [y4]-module, and there are injective /c[/l]-homomorphisms

W-* V and W-»fc[X]. Therefore kA and /ο(Κ)-4 are both rational over

k(W)A. Since dimk(V)^\A\, it follows that fe(F)·4 is /c-isomorphic to a

rational extension of kA. Application of (5.7) completes the proof. Q

The argument in our solution of the case V = k[A] which does not

carry over to the general case is the proof of (5.2). But by exercising a

little more care one can show that the bound \A\ in (6.4) may be replaced

by \A\ — \Φ(Α)\, where Φ(Α) denotes the Frattini subgroup of A (i.e., the

intersection of the maximal subgroups of A).

7. CorolJaries

We note some consequences of our main theorem. Some of them

appeared already in [10, 48].

(7.1) Corollary. Let k be α field and p a prime number. The Splitting field

of Xp-l over k is denoted by l, and d= [1: K}. Then kz/pZ is rational over k

if and only if the ring Z [C J contains a principal ideal of index p.

Proof. We may assume 2=(=p=}=char(/c). By the main theorem, fez/pZ

is rational over k if and only if a, (Z/p Z) is a principal ideal of Z (p,).

This implies (7.1), since a, (Z/p Z) has index p in Z(p,)̂ Z[Cd] and since

any two ideals of index p in Z [Cd] are conjugate over Z. Q

(7.2) Corollary. Let «3:1 be an integer. Then Qz/„z is rational over Q

if and only if the following two conditions are satisfied:

(i) the integer n is not divisiblc by 8;

(ii) for every divisor q of n of the form q-ps, with p an odd prime and

s a positive integer, the ring Ζ[ζφ(β)] contains a principal ideal of index p;
'

Proof. This is just a translation of the main theorem for this case. D

(7.3) Corollary. Let k be a field and A a finite abelian group such that

the exponent of A divides

22 . 3m . 52 . 72 . u . 13 . 17 . 19 . 23 · 29 · 31 · 37 · 41 · 43 · 61 · 67 · 71

for some non-negative integer m. Then kA is rational over k.
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Proof. It suffices to show that for each odd prime power q = ps dividing

the exponent of A the ring Z[£̂ (e)] contains an element of norm p. This

has been done in [10]. 0

(7.4) Corollary. Let k be a field and A a finite abelian group such that:

(i) for every odd prime p which divides the exponent of A, ihe Splitting

field oj Xp— l over k has degree l or 2 over k;

(ii) ij r is the highest power of 2 dividing the exponent of A, then the

Splitting jield of Xr — l over k is a cyclic extension of k.

Then kA is rational over k.

Proof. This follows from the main theorem and the remark that

l —tpt is an element of norm p in the ring Z[£pt] = Z[£2pt], for every

odd prime power p'. Q

Corollary (7.4) confirms a conjecture of Kuniyoshi [32] for p φ 2;

for p = 2 the conjecture is false.

(7.5) Corollary. Let k be a field and A a fimte abelian group. Assume that

condition (ii) of the main theorem is satisfied. Then there exists a rational

field extension kcLof finite transcendence degree, and a Galois extension

La L, such that Gal(L'/L)S/4.

Proof. Let e be the exponent of A, and let / be the Splitting field of

Xe-l over k. Denote by h the lowest common multiple of the class

numbers of the rings Z(pK), where K runs over the fields k^Kc.1 which

are cyclic over k. Put G = Ah. Then the main theorem implies that kG

is rational over k. Hence we can take L = kG and L' equal to a suitable

intermediate field fccc;L'<=/c({xg|geG}). D

(7.6) Corollary. Let k be a field, which, äs a field, is finitely generated
over its prime field. Let Pk denote the set oj prime numbers p for which
k-z/pz is rational over k. Then Pk has Dirichlet density 0 inside the set of all
prime numbers.

Proof (sketch). We need some algebraic number theory [26].
First we consider the case char(fc) = 0. Then [fc(Cp):fc] = p—l for all

but finitely many prime numbers p, so by (7.1) it suffices to do the case
k = Q.

For a prime number m, let Km = Q̂ m), let Lm be the Hubert class
field of Km, and let h(m)=[Lm:Kmi be the class number of Km. We put

Sm = (p|p is a prime number, which either splits completely in Lm,

or does not split completely in Km} u {m}.

We claim PQczSm, for every prime number m. In fact, if pePQ is a prime
number unequal to m which splits completely in Km, then m\p— 1; but
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by (7.1) the ring Ζ[ζρ_1] contains a principal ideal of norm p, and there-

fore also Z [£m] contains a principal ideal of norm p. This means that p

splits completely in Lm, äs required.
Using Tchebotarev's theorem and an easily proved linear disjointness

Statement, we find that for any finite set M of prime numbers the set
P) Sm has Dirichlet density

Since h(m)̂ .2 for all prime numbers m 2:23, cf. [29], it follows that
P) Sm has Dirichlet density 0. Therefore also the subset PQ of (~] Sm

m prime m prime
has Dirichlet density 0.

The case of nonzero characteristic is slightly more complicated. We
may assume that k is a finite field, say k = Fq , where q = r" and r = char (k).

For a prime number m, let Km, Lm and h (m] be äs above, and put

Tm={p\p is a prime number, which splits completely in Lm,

or splits completely in Em ,

or does not split completely in Km} u {m, r} .

We show Pk <= 7̂  for every prime number m. Namely, assume that pePk
does not divide mr and splits completely in Km. We distinguish two cases.
If the order of (q mod p)eF* is divisible by m, then [&(ζρ):/<] is divisible
by m. Using (7.1), we then conclude in the same way äs for k = Q that p
splits completely in Lm, so peTm. On the other hand, if the order of
(q mod p) in F* is not divisible by m, then it is relatively prime to m, so
(q mod p) is an m-th power in Fp. Since v e assumed that p splits completely
in Km, this implies that p splits completely in £m, so peTm, äs required.

If M is any finite set of prime numbers m not dividing n · r. the Dirichlet
density of f| Tm is

meM
U(l-(h(m)-l)/h(m)-m).
meM

Hence n ^

m prime, m does not divide nr

has Dirichlet density 0, so the same is true for /J. D

Finally, we remark lhat for /c = F2 the set Pk contains all Mersenne
and Fermat prime numbers.
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