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Rational Functions Invariant
under a Finite Abelian Group

H.W. Lenstra, Jr. (Amsterdam)

Introduction

Let k be a field and 4 a permutation group on n symbols x,, ..., X,,.
Then A acts in a natural way as a group of k-automorphisms on the
field of rational functions k(x, ..., x,). It is an old question, whether the
field of invariants

k(xy, .o, x ) ={fek(x,, ..., x,)|g(f)=F for all geA}

is purely transcendental over k or not, cf. Burnside, Theory of groups
of finite order, second edition (1911), Ch. XVIIL. One usually calls this
problem “Emmy Noether’s conjecture” although Emmy Noether never
stated that the answer would be affirmative [35-37].

Several positive results are known on this problem. Fischer [12]
treated the case when A4 is abelian and k contains sufficiently many
roots of unity. His result has been reproved [25, 7] and refined [32, 33]
several times. If A is a p-group, where p=char(k)#0, then k(x, ..., x,)*
is purely transcendental over k, by [21, 20, 22, 16, 33]. Various groups
of small order are treated in [35, 37, 41, 14, 3-5, 30, 31, 23, 46, 17].

Swan [44] and Voskresenskii [46] proved that Q(x,, ..., x,)* is not
purely transcendental over Q if 4 is a cyclic group of order n=47,
permuting x,, ..., X, transitively. An even smaller example is given by
n=38, cf. (7.2). Further results for abelian 4 were obtained by Endo and
Miyata [10] and Voskresenskii [47, 48].

Our main theorem [27, 19] gives a complete solution for the case
when A is abelian and transitive. In this case we can index the x, by the
elements of A such that g(x,)=x,, for all g, heA; we denote the field
k({x,|geA})" by k,. Before stating the main theorem, we introduce some
terminology.

Let p be a finite cyclic group of order m with generator 7, and let
&, eZ[ X] be the m-th cyclotomic polynomial. The ideal ¢,,(t) Z[p]c=Z[p]
(=group ring of p over Z) does not depend on the choice of 7, and we

define Z(p)=Z[p)/®, (1) Z[p].
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Then Z(p)~Z[(,], where {, denotes a primitive m-th root of unity,
so by [26, Ch IV, Th 4] the ring Z(p) 1s a Dedekind domain The group
of units of Z(p) contains p m a natural way

Denote by k., the maximal cyclotomic extension of the field k mnside
an algebraic closure Consider a subfield K <k, contaming k for which

01 px=Gal(K/k) s finite cyclic, with generator g,
and let p and s satisfy

02) p1s prime, 2%p=+char(k), seZ, and s=1
Then we define the Z(py)-1deal ax(p*) by

ax(p*)=Z(px) if K+k((,.),

a(p)=(tx—t,p)cZ(py) f K=k((,), where teZ
1s such that 7, ((,)={;

P

This definition does not depend on the choice of 7

For a finite abelian group A, put m(4, p, s):dlmz/pz(p‘"lA/p‘A)
{(here A 1s written additively), and

QK(A)‘—‘H C‘K(ps)mm P S)CZ(PK),

the 1deal product ranging over all p and s satisfying (0 2)
Let r(A4) be the highest power of 2 dividing the exponent of 4

Main Theorem. Let k be a field and let A be a fimte abehan group
Then the field
ky=k({x,lge A}

15 purely transcendental over k if and only f the following two conditions
are satisfied

(1) for every intermediate field k— K ke, for which (0 1) holds, the
Z(pg)deal ag(A) 1s princpal

(11) of char(k)+2, then k(pa)) 18 a cyclic field extension of k

Note that condition () 1s satisfied if char(k)40

Sections 1-5 of the present paper are devoted to the proof of the
maimn theorem The i1dea 1s to use Fischer’s result that I, 1s purely
transcendental over [ if | 1s a suitable cyclotomic extension of k The
“Galo1s descent” problem which arises i going from I, to k,, 1s discussed,
mn a more general setting, m Sections 1 and 2 Section 3 gives some useful
technical information The group A does not occur i these sections
In Section 4 we show that we may assume that char(k) does not divide
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the order of A4, and Section 5 contains the proof of the main theorem.
Supplementary results are given in Section 6, and some corollaries are
indicated in Section 7.

The methods of this paper hardly exceed Galois theory and elemen-
tary commutative algebra. From cohomology of groups we need some
facts on H! and H~!; these results are easily proved from the explicit
descriptions of H' and H~! given in [42, Ch. VII, VIII; 6, Ch.IV]. In
the proof of (2.6) we need that a projective module over an abelian group
ring has a rank; but this will be clear for the modules to which (2.6) is
applied. We shall use freely the theory of finitely generated torsion free
modules over a Dedekind ring [ 18]. Finally, the proofs of some corollaries
in Section 7 require some algebraic number theory.

In the rest of this paper we write “rational” instead of “purely
transcendental”, A field extension k<L is called “stably rational” if
there exists a field extension L < I of finite transcendence degree such
that L is rational over both L and k. It is unknown whether “stably
rational” implies “rational” [40, 9, 34].

The notations @,, {,,, Z(p) and k, have been introduced above. The
characteristic of a field k is denoted by char(k), the degree of a field
extension k<! by [I:k] and the group of a Galois extension k<! by
Gal(l/k). For a prime p, a p-group is a group whose order is a power of p.
The exponent of a group is the lowest common multiple of the orders
of its elements. Ifa group 7 acts on a set S, then S"={seS|Voen: g(s)=s}.
The action of = on S is called trivial if =8 and faithful if for every
ogen, o1, there is an seS with ¢(s)#s. By a n-module we mean a left
module over the group ring Z{r], and we write ®, and Hom, instead
of ®y, and Hom,,,, respectively. The group of units of a ring R with 1
is denoted by R*. If M is a module and t is 2 nonnegative integer, then M*
denotes the direct sum of t copies of M ; the only exception is the definition
of ag(A4) above, where we mean ideal power. Set theoretic difference is
denoted by ~, and |S] is the cardinality of a set S. The end or the absence
of a proof is marked by [I.

1. Permutation Modules and Rationality of Field Extensions

Let n be a finite group. A n-module is called a permutation module
if it is free as an abelian group and has a Z-basis which is permuted by =.
For example, free n-modules are permutation modules, and Z, with
trivial m-action, is a permutation module.

Every permutation module is a direct sum of modules Z{x/n]; here
7' <x is a subgroup and

Z{n/n)=Z[n]®, Z (as n-module)
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where 7’ acts trivially on Z We call a n-module N permutation-projective
if N®N' 18 a permutation module for some n-module N’ One can
take N' to be fimtely generated if N 1s, ¢f the proof of (12)

(11) Proposition. Let N be a permutation-projectwe n-module Then
A-Y(p, N)=H'(p, N)=0 for every subgroup pcm

Proof Since any permutation module over 7 1s a permutation module
over every subgroup pcm, we may assume p=7 Also we may take
N =Z[rn/n", for a subgroup #' = n Then by Shapiro’s lemma [6, Ch IV,
Prop 2] we have H'(m, N)=H!(z,Z)=0, and the proof for H™' 1s
analogous [}

(12) Proposition. Let N be a n-module The following statements about N
are equivalent

(a) N is permutation-projective

(b) for every n-homomorphism M, — M , which induces surjective maps
M?—> MY for all subgroups p <, the induced map

Hom_ (N, M,)—Hom,(N, M,)
1S surjective

(©) f Lis a n-module such that H (p, L)=0 for all p=n, then every
exact sequence of m-modules

O0—-L->M->N=-0
splits

Proof (a)=(b) We may take N=Z[n/p] for some subgroup pcx
Then the functors Hom, (N, —) and (— )’ are equivalent, and (b) follows

(b) = (c) Let 0—L—M— N—0 be a sequence as n (c) By the exact
sequence of cohomology, the map M?— N” 15 surjective for every

subgroup pcn Applying (b) to M;=M and M ,=N we find that the
sequence splits

(c) = (a) Ome easily constructs a permutation module M over 7 and
a m-homomorphism M— N such that M?— N” 1s surjective for every
pen Let Lbe the kernel of M— N The exact sequence of cohomology of

0O—L->M-—->N=—-0

and (1 1) show that H'(p, L)=0 for every pcn By (c), the sequence
sphts, and (a) follows []

Note the analogy with the well known characterization of projective
modules as direct summands of free modules

Let | be a field, M a free abelian group of finite Z-rank r, and /[M]
the group ring of M over | if M 1s written multiplicatively and {b,, ,b,}
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15 a Z-basis for M, then
l[M]=l[b1’ 7bra bl_la 7b:1]

I'hus we see that I[M] 1s isomorphic to the ring of Laurent polynomials
in r variables over | It follows that If M] 1s a unique factorization domain
with group of units I{M]*=1* M We denote the field of fractions of
I{M7] by [(M) This field is rational over ! of transcendence degree r

Now suppose that n acts faithfully on [ as a group of field
automorphisms, and that M has a n-module structure We make =
act on I[M] by

o( Y A, m= Y o(i,) aim), for gen,
meM meM
if A,,€l, and 2,0 for only finitely many meM The action 1s extended
to I(M) by a(ab~YY=a(a)o(b)"?, for a, bel[M], and b+0

In Theorem (1 7) we give a necessary and sufficient condition, mn
terms of M, that [(M)" be stably rational over I", ¢f [45, 10] Theorem (2 6)
states that i a special situation this condition even unplies that [(M)"
18 rational over [*

Remark that I(M)" 1s rational over I” if and only if a certan torus,
defined over I" and splitting over I, 1s rational over [*, ¢f [38] This will
not be used m the sequel

We usually write the group law in M additively, although M 15 a
sub-n-module of the multiplicatwe group of (M)

(13) Proposition[43] Let W be an lvector space on which m acts
semilinearly, 1e W s a n-module and c(Aw)=(c ) (o w) for all cen, Ael
and weW Then W™ contans an l-basis for W

Proof Put S$=(3 g)eZ[n] We show that SW< W" contains an [-

CET

basis by proving that any l-linear function ¢ W-—!| anmihdating SW
must be the zero function Fix such & ¢, and fix we W Then for every

A€l we have 0=¢(S Aw)=Y d(ow) a(i)

GET

By the Iinear mdependence of ficld automorphisms [2, Ch V, §7 5] we
conclude ¢ (o w)==0for alloen In particular ¢(w)=0,and (1 3)follows []

(14) Propoesition [30] Let N be a fimtely generated permutation module
over © Then I(N)" 1s rational over I*

Proof Let {x,, ,x}cl(N)* be a Z-basis for N which 1s permuted by =
Applying (1 3) to W—-—( PN xl) <l(N)we find y;, ,y,€l(N)"such that
1==1
Ky,  ,y)=UN) It follows that (N =["(y,, ,y) O
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(1.5) Proposition. If N is a permutation-projective m-module, and
0—M,—M,—N—0 is an exact sequence of finitely generated Z-free
n-modules, then the fields I(M,)" and I(M,@® N)* are isomorphic over I".

Proof. The field I(M,) 1s naturally contained in I(M,). Let (M )* -
M, < 1(M,)* be the subgroup generated by /(M )* and M, . Consider the
exact sequence of n-modules

0—I(M)*—1(M)* - M,—»N-0
where the map f: I(M,)* - M,— N is defined by
f(A-my=(mmod M,)eN, for Ael(M))* and meM,.

By Hilbert Theorem 90 and (1.2)(c) this exact sequence splits. The
resulting 7-homomorphism N — [(M,)* easily yields a field isomorphism
(M, @N)=I(M,) which respects the action of =, and (1.5) follows.
Compare [39, Prop. 1.2.2]. 0

(1.6) Proposition. If N is a permutation module over ©, and
0-M,—-M,—»N—-0

1s an exact sequence of finitely generated Z-free n-modules, then (M ,)"
is rational over |(M )"

Proof. From (1.5) we get I(M,)"=I(M,®N)", and (1.4), applied to
the base field /(M,) instead of I, says that I(M,@® N)* is rational over
KM)™ 0

(1.7) Theorem [45, 10]. Let M be a fimtely generated Z-free n-module.
Then (M)" is stably rational over I* if and only if there 1s an exact

sequence of m-modules
0->M-—->N, >N —0

in which N, and N, are finitely generated permutation modules.

Proof. If 0 M — N,— N,— 0 is an exact sequence as in the theorem,
then [(N,)" is rational over both I* and I(M)", by (1.6). This proves the
X3 if’?_part‘

Next suppose (M) is stably rational over I, so
M) (xyg, ..., x)=1"(yy, ..., Vegs)

where {x;, ..., x,} is algebraically independent over I(M)"and {y,, ..., y, vs)
is algebraically independent over I*. Let x act on

l(M)(xl’ crto xs):l(M) ®[(M)n I(M)"(xl, ceey xs)
via the first factor. Put

Ry=I[M][x,....,x] and Rzzl[yl,...,yrﬂ]
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mside the field I(M)(x,, .x,) By [44, Lemma 8] there are nonzero
elements a,€R} and a,e R} such that R, [a; ']=R,[a; '], call this last
rmg R Lemma 7 of [44] tells us that there are exact sequences of n-
modules

0—-Rf>R*>N —0

0—R¥—>R*-N,—0

m which N; and N, are finitely generated permutation modules
Replacing R*, R¥ and R% by R*/I*, R}/I* and R%/I* we get

0->M—->R¥lI* >N, —0

0— 0 —=R*I* >N,—0
The theorem follows [j

(18) Corollary. Let M be a fuutely generated Z-free m-module, and
suppose H'(p, M)=0 for every subgroup pc=n Then I(M)" 1s stably
rational over I" if and only if M@ N, =N, for certamn finitely generated
permutation modules N, and N,

Proof (1 7)and (12)(c) 1

2. A Special Case

In this section = 1s a finite abelian group, and [ 1s a field on which
acts faithfully as a group of field automorphisms If 7” < 1s a subgroup,
then we call #'=n/n" a factor group of = The canomical map n—n’
allows us to view every n-module as a r-module m a natural way

Let p be a cyclic factor group of © Then there 1s a natural surjective
ring homomorphism Z[r] — Z(p) (see the introduction for the defimtion
of Z(p)), which allows us to view every Z(p)-module as a n-module
If M 1s a n-module, we put

E, ,(M)=(M ®, Z(p))/{clements of finite additive order}

Then F, , 1s a functor from the categery of m-modules to the category
of torsion free Z(p) modules, left adjomnt to an obvious functor the
other way
(21) Proposition. Let S(rn) denote the set of cychc fuctor groups of =,
and let i’ be a factor group of © Then there 1s a naturalinclusion S(n') < S(n),
and for every n'-module M we have

() f peS(), then E, ,(M)=F, ,(M) over Z(p),

() of peS(n) but p¢S(n'), then F, ,(M)=0

Proof The mclusion S(n")= S(n) 1s induced by the surjection 7 — 7’
Assertion (1) 18 clear from M ® Z{[n'}>~M We prove (1) Since p¢S(n'),
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we can choose an element oen, which has image 1 in n’ while its image
o*in p is = 1. Then ¢ acts trivially on M, so

(@*~1)-(M ®,Z(p))=0,

where ¢*—1 is a nonzero element of Z(p). Since ¢*—1 divides some
positive integer in Z(p), it follows that M ®,Z(p) is torsion, so
F, (M)=0. [

This proposition says that F, , does not depend on 7, in a certain
sense. From now on we will write F, instead of F, ,.

(2.2) Proposition. Let N be a n-module, and M = N a sub-n-module such
that N/M is a torsion group. Then F,(M) is isomorphic to the image of M
under the natural map N — F,(N), for every cyclic factor group p of .

Proof. Let J be the kernel of Z[n]— Z{p). Then for every n-module
P there is a natural surjection P— F,(P) with kernel

{peP|dkeZ, k+0: k-peJ - P}.
Since N/M is torsion, we have
{meM|3keZ, k+0: k-meJ -M}=Mn{neN|IkeZ,k=+0: k-neJ-N},
and (2.2) follows. []

(2.3) Proposition. If N s a permutation module over m, then F,(N} is
Z.(p)-free for every cyclic factor group p of n.

Proof. It suffices to treat the case N=Z[n"], where n’ is a factor
group of 7. Then F,(N)=Z(p) or F,(N)=0, by (2.1}. []

(24) Theorem. Let m be a finite cyclic group, and M a finitely generated
projective m-module. Then the fields |(M)" and I(® F,(M))" are isomorphic

P
over I*; here p ranges over the set of cyclic factor groups of n.

The proof of this theorem is given at the end of this section. An
analogous result is given in [[10]. Compare also [11].

(2.5) Corollary. Let m be a finite abelian group, and let M be a finitely
generated n-module of the form

M=®M,,

where each M, is a projective n'~-module, and where ©' ranges over the set
of cyclic factor groups of n. Then

UM =@ F,(M))"  over I,

with p ranging over the set of cyclic factor groups of .
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Proof. Let n'=n/n" be a cyclic factor group of n. Applying (2.4) to
the cyclic group =’, the module M, and the field I*", we find, using (2.1):

M,y =@ F,(M,)* overI*.
3
Tensoring with [ over I* gives an l-isomorphism
M) = l(@ F,(M,))
which respects the action of 7. Combination yields an l-isomorphism

{M)=U(@ F,(M))

2

which respects the action of #, and (2.5) follows. [

(2.6) Theorem. Let  be a finite abelian group, and let M be a finitely
generated n-module of the form

M=®M,,

where each M, is a projective n'-module, and where ' ranges over the set
of cyclic factor groups of m. Then the following three statements are
equivalent :

(a) the field (M)" is rational over I";

(b) the field I(M)" is stably rational over I";

(c) for every cyclic factor group p of =, the Z(p)-module F,(M) is free.

Proof. The implication (a) => (b) is obvious

(b) = (c). Since M is permutation-projective over n, we can apply
(1.8). Using (2.3) we find that for every cyclic factor group p of n there exist
finitely generated free Z(p)-modules F, and B, such that F,(M)® R =PE
over Z(p). Since Z(p) is a Dedekind doraain, this implies that F,(M) is
Z(p)-free, as required.

(c) = (a). Let r(n') be the rank of M_, over Z[x'], and put

N=@Z[r7".
Let p be a cyclic factor group of n. Then the Z(p)-modules F,(M) and

F,(N) are isomorphic; in fact, by assumption and by (2.3), they are both
Z(p)-free of rank Y. r(n'), the sum ranging over those cyclic factor groups

7’ of = for which p is a factor group of n’. Therefore

@ EM)=DE,(N),
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so [(M)"=I(N)* by a twofold application of (25) But [(N)" 1s rational
over I, by (1 4), and (a) follows [J

The remainder of this section 1s devoted to the proof of Theorem (2 4)
We assume that = 1s a cychic group of order m with generator © The set
of positive divisors of m 1s denoted by E(m) For deE(m), the unique
factor group of = of order d 1s denoted by =, If C < E(m)1s a subset, then
we write &= || @,, for example, Py, =X"—1 If M 1s a n-module and

deC
Cc E(m), we write M =M /P (1) M
27) Lemma. If M 15 n-projectwe, and d€ E (m), then Mg, 15 permutation-
projecte over

Proof The module M, =M ®,Z[nr,] 1s n,-projective, hence a direct
summand of Z [z ]’ for some teZ,t=0 I

(28) Lemma. Let M be n-projectwe, and C, C' < E(m) disjoint subsets
Then there 1s an exact sequence of n-modules

0—>Mc—>Me,e = Me —0

Proof The map M. . — M, 1s the natural one, and the map
Mq— M ¢ 18 mduced by multiphication with & (tr) For M=Z[x],
exactness of the resulting sequence 15 easily checked The general case
follows sice everything preserves direct sums [}

Let G(m) denote the set of all equivalence relations on E(m) For
ue G(m), we denote by [u] the set of non-empty equivalence classes of u
Let S{m)< G(m)x G(m) be the set of (u, v)e G(m) x G(m) for which

(29) there exist de E(m) and Defu], such that E(d)<D, E(d)%=D and
[v]={E(d), D~ E(d), C|Ce[u], C+D}

(210) Lemma. The graph (G(m), S (m)) 15 connected

Proof The statement means that for all u, veG(m) there 15 a finite
sequence (u,)]_, of elements of G (m) such that u,=wu and u,=v, and such
that for every ; with 0= <a, etther (u,,u,, JeS(m) or (u,,,,u)eS(m)
We call such a sequence a “path from u to v”

Let the two “trivial” equivalence relations i(m), w(m)eG(m) be

defined by [eom)]={{d} IdEE(m)} and [(w(m)]={Em)}

Clearly, 1t 1s sufficient to show that for each ue G (m) there 1s a path from
u to 1(m) This 1s done by induction on m For fixed m, we use imnduction
on n(u)=|E(m)| —|[u]|

If n()=0 then u=1(m) and obviously the required path exists
Suppose that n{u)>0, and let e be the smallest element of E(m) for which
there exists a class De[u] with eeD and [D|>1 Clearly e<m Therefore,
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the induction hypothesis on m may be applied, yielding a path (v)°_, from

i(e) to w(e) in the graph (G(e), S(e)). For 0<j<b, let D,e[v,] be such

that eeD,. Define u,eG(m), for 0<j=<2b+1, by
[u]={Ce[u]lCnE(e)=@} u{DUD}u([v]~{D})

if0<j<bh, and
[u]={Ce[u]|CNE(e)=0} u{D~{e}} Ulvyy,,_,]

if b+1<j<2b+1. We leave it to the reader to check that (u,)?2§* is a
well defined path from u=u, to u,,_,, and that

[“zb+1] = {D\ {e}, {e}} v ([ul~{D}).

It follows that n(u,,,,)=n(u)— 1, and the induction hypothesis on n(u)
yields a path from u,, . , to i(m). Combination yields a path from u to i(m).
This proves the lemma. [

Let I and M be as in (2.4). For ueG(m) we put M (u)= @ M,.

Celu]
(211) Lemma. Let u, ve G(m). Then |(M (u))"=1(M (v))* over I".
Proof. By Lemma (2.10) we may assume that (2.9) holds. Then by (2.8)
there is an exact sequence of n-modules

O—)MD\E(d)——"MD_)ME(d)"—)O'
N= @ Mc

Celu],C*+D

Adding a summand

yields an exact sequence
0->NO®Mp gy NOM,— My, —0.
These modules are Z-free, since M is projective. Using (2.7) and (1.5)
we get an isomorphism of fields
IN®M gy ® M) =N DO Mp)*

over I". Because of (2.9) this is exactly the same as [(M (W))"=I(M (v))*
over I". [

Proof of (2.4). Let i(m), w(m)e G (m) be as in the proof of (2.10). Then
M(i(m)) =@ M/®,(v) M =D F,(M),

dlm

M(w(m)=M/(z"~1) M=M.
So (2.4) follows from (2.11) if we put u=i(m) and v=w(m). 0
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Remark. Theorem (2.4) can be generalized to the case M 1s per-
mutation-projective over . The only modification in the proof is that
for C < E(m) the module M. has to be redefined as follows:

M =M/{xeM|3keZ, k+0: k-xed(t)- M},
and that C’ in (2.8) must be equal to E(d), for some de E (m).

3. The Modules I, and J,

Let p be a prime number, and let g=p° be a power of p, with s> 1.
In this section ! denotes a field of characteristic +p which contains a
primitive g-th root of unity {,, and = is a finite abelian group of auto-
morphisms of I. We put k=" and n(q)z{oenlJ(Cq)=Cq}=Gal(l/k(Cq)).
Let p(q)=Gal(k(()/k)=n/n(q). The map n— (Z/qZ)*, which sends 1
to (t mod q) if ©({,)={}, gives rise to an injective group homomorphism
¢,: p{g)— (Z/qZy*. This map makes Z/¢Z into a p(g)-module and hence
into a m-module.

We consider first the case when p(g) is non-cyclic, and afterwards
the case when p(qg) is cyclic.

So assume that p(g) is non-cyclic. Then ¢q is divisible by 8. Put
C(q)=(Z/qZ)~ {0}, and let Z°@ be a free abelian group of rank g—1
with Z-basis {e,|ceC(g)}. We make Z°® into a p(g)-module by
ole)=e,,, for cep(q) and ceC(q). Then the group homomorphism
29, Z./qZ, mapping e, to ¢ for ce C(q), is p(g)-linear, and we call its
kernel I,. So there is an exact sequence of p(g)-modules

0—-1,»Z9~Z/qZ—0.
(3.1) Proposition. For every subgroup n’' <n we have H* (1, 1,)=0.
Proof. Obvious from the exact sequence of cohomology. []
(3.2) Proposition. For some subgroup n' <n we have H ', 1)=+0.

Proof (sketch). Since I, is torsion free, we may assume 7= p(g). We
assumed that = is non-cyclic, so there is a subgroup «' with ¢ [n']=
{Lu—1Lu+1, —1}=Z/qZ, where u=%q. We are going to prove
HY(n', I)=Z2Z.

Put C={l,u—1,u,u+1, —1}=C(q)=Z/qZ. Then Z€ is a sub-r'-
module of Z€“ in an obvious way, and restricting the map Z€@ _, 7/qZ
to Z° we get an exact sequence of #’-modules

0—>M-—ZE~7/qZ—0

where M=Z°n1I . The exact sequence of cohomology easily yields
H'(n", M)=0 for all five subgroups n"" = =’, and an explicit computation
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inside M shows H~!(n, M)~Z/2Z. By diagram chasing one gets an
exact sequence
0—>M 1, 7@~ 0,

which splits by (1.2). Using (1.1) we find A~ (%, I)=Z/2Z, as required. []

For the remainder of this section we assume p(g) is cyclic. The ring
homomorphism Z[p(q)] - Z/qZ induced by ¢, is p(q)-linear, and we
call its kernel J,. So there is an exact sequence of p(g)-modules

0—J,—Zp(@)]—Z/qZ—0.

(3.3) Proposition [10]. Let p(q) be cyclic. Then J, is a projective p(g)-
module except if (3.4) holds:

(3.4) q=0 mod4 and ¢, [p(@]={+1,—1}=(Z/qZ)*.

Proof. Suppose (3.4) does not hold. Let p=¢,[p(q9)]=(Z/qZ)* and
n=|p|=lp(g)|. Let p, =(Z/pqZ)* be the inverse image of p under the
canonical map (Z/pqZ)* — (Z/q Z)*. Then p, has order np, and we claim
that p, is cyclic.

Suppose, in fact, that p, is non-cyclic. Then (Z/pgZ)* is non-cyclic,
s0 p=2 and ¢=0 mod4. Moreover, (—1 mod pg)ep,, so —1lep. But
the only cyclic subgroup of (Z/qZ)* containing —1 is {+1, —1}, so
p={+1, —1}. Hence (3.4) holds, contradicting our assumption. We
conclude that p, is cyclic.

Choose reZ such that (t mod pg) generates p,. Since |p,|>n, we have
t"#1 mod pg. Clearly, (t mod g) generates p, so t"=1modg. Hence
t"—1=a- g, where a and g are relatively prime.

Let tep(g) be such that ¢, (t)=(¢t mod g). Then 7 generates p(qg),
and the Z[p(g)]-ideal J, is generated bv 17—t and g. Denote by M the
Z[p(qg)]-ideal generated by t—t and a. Then J +M=Z[p(g)], so
Jyn"M=J,- M. Hence we have an exact sequence of Z[ p(g)]-modules

0-J, M—J®M—->Z[p(g)]—0

where the map J, &M — Z[p(q)] 1s defined by (j, m)r—j—m. The ideal
J,-M is generated by the four elements {(x—1)* a(t—1), g(x—1), aq}
Whereaq—t"—'c It follows that J, - M =Z[p(qg)] - (1~ ) isafree Z[p(q)]-
module, and since the above sequence splits we find that J, is p(q)-
projective. []

Remark. 1f (3.4) holds, then J, is not projective. In fact, suppose
¢=0mod 4 and p(q)={1, 7}, where ¢, (r)=—1. Then J, has a Z-basis
{1+1,4qg—%q -1}, so J,=Z@Z’; here p(q) acts trivially on Z, while
the p(g)-module Z' has underlying abelian group Z and p(g)-action
T-m= —m, for meZ.

21 Inventiones math, Vol 25
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(3.5) Proposition. Suppose g is a power of 2 and p(q) is cyclic. Then
I(J)" is rational over I".

Proof. Replacing | by ["@ we may assume n = p(q). Suppose first that
(3.4) holds. Then by the above remark I(J))=I(x, y), where 7(x)=x and
7(y)=y~!; here t denotes the non-trivial element of x. Choose ael with
t(@)#a. Then I(x, y)*=I"(x, z), where z=(oy-+1(2))/(y+1). So in this
case I(J,)" is rational over [I".

Suppose now that (3.4) does not hold. By (3.3), the z-module J, is
projective, so we are in a position to apply (2.6). Hence we need only
check that F,(J,) is Z(p)-free for every factor group p of .

So let p= {1} be a factor group of = of order 2'. Since J, has index ¢
m Z[r], it follows from (2.2) that F,(J,) may be considered as a sub-
module of 2-power index in F,(Z[n])=Z(p). But Z(p)=Z[{,.], and
every ideal of 2-power index in Z[{,.] is generated by the corresponding
power of 1—{,,, and is therefore free. It follows that F,(J,) is Z(p)-free,
as required ]

If K 1s a subfield of I which is a cyclic extension of k, then Gal(K/k)

is a cychc factor group of 7, and we will write Fy instead of F, ;.

(3.6) Proposition. Suppose q is odd. Let K be an intermediate field
ke K <l such that pgy=Gal(K/k) is cyclic. Let ag(—) be as in the intro-
duction. Then

Fe(J)=ax(Z/qZ)  as Z(pg)-modules if K <k((,),
Fe(J)=0 if K&k(().

This is proved after the proof of (3.7).

(3.7) Lemma. Let g=p* be odd, iet T be a generator of pl@)=n/n(q)=
Gal(k(C,)/k), and choose teZ such that ©({)=(.. We denote the order
of (t mod p)e(Z/pZ)* by f, and we put p"=g.c.d.(q,t/ —1); here reZ and
1£rss.

In this situation, any intermediate field kCKCk(Cq) is uniquely
determined by its degree [K:k] over k. Moreover, if K is such a field,
then py = Gal(K/k) is a cyclic group, generated by the image 1y, of T in pg.
We have:

(i) if K=k(,), then K=k((,) for all 1<i<r, the degree [K:k]
equals f, and Fy(J)) is, as a Z(pg)-module, isomorphic to the r-th ideal
power of the Z(py)-ideal generated by p and g —teZ(py):

(i) if K=k(C,) withr<iZs, then [K:k]={"p'"", and Fe(J)is, as a
Z(pg)-module, isomorphic to the Z(py)-ideal generated by p and th—t'

’

(iii) for all other K <k({,), we have Fe(J)=Z(py) as Z(py)-modules.
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(3.8) Lemma. For meZ, let ord(m) denote the number of factors p in m.
Let t and f be as in (3.7). Then:
(i) ord(®,(r))=ord(t/ —1)>0,
ord(®,,.(1))=1 for all ieZ, i>0,
ord(cp (t)) 0 for all other deZ, d>0.
(i) ord(r™—1)=0 if meZ, m>0 and m#0 mod f,
ord(¢" —1)=ord(t/ —~ 1)~ ord(m) if meZ, m>0 and m=0 mod f.

Proof of (3.8). See [1, Lemma 1]. []

Proof of (3.7). Since k({,) is a cyclic extension of k, it is clear that an
intermediate field K is determmed by its degree over k, and that py is
generated by the image of <.

Let 1<i<s. By Galois theory, [k((,):k] is the smallest positive
integer m for which () ={p, Le, for Wthh t"—1=0mod p". From
(3.8) (i) it follows then that [k((,):k]= f1f1<l<r and [k((,):kl=f" pir
if r<i<s. This proves the statements concerning the degrees [k({,):k].
In particular, [k({,):k]=fp*~"

Now let chck(C ) be such that [K:k]=d, where d|f - p°".
Tensoring the exact sequence defining J, with Z{py) over Z[p(q)], we
find an exact sequence of Z(pg)- modules

Jq ®p(q)Z(pK)"* Zp(g)] ®p(q)Z(pK)_“‘) (Z/97) ®p(q)Z(pK)_’ 0

Since J, is projective, the first two modules in this sequence are Fy(J,)
and FK(Z [p(g)])=Z(pk), and the first arrow is injective by (2.2). Using
Z(p)=Z[p(q)]/P(x) Z[p(q)] we find for the cokernel:

(Z/9Z2)® o Z(p) =(Z/qZ)/®4(v) - (Z/q Z)
=Z/(q-Z+P,(0)- Z)

since T acts on Z/q Z as multiplication by .
Summarizing, we have an exact sequence of Z(pg)-modules

0— Fe(J) = Z(pg)— Z/(a- Z+D,(1) - Z)—0

where the map Z(py)—Z/(q- Z+P,(t)-Z) sends 1¢ to the residue
class of t.

In case (iii) we have g.c.d.(g, ®,(t)=1, by (3.8)(i), so Fy(J) is iso-
morphic to Z(p,). In case (i), we have g.c.d.(g, &, (t)) p, by (3.8)(i),
so Fy(J,) is isomorphic to (p, 1y —t) = Z(py). Finally, in case (i) we have
g.cd. (q, @,(1)=p", so Zlpg)/Fx(J)=Z/p'Z is a local ring. Therefore
F¢(J,) is an ideal power of (p, 1 — t) and computing norms we find that
the exponent has tober. [

21*
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Proof of (3.6). For K 4-k({,) we have F(J)=0 by (2.1). Therefore it
suffices to consider subfields K <k({ ). These fields are described in
(3.7), and for each of them Fy(J,) is computed. Comparing the outcome
with the definition of ay (Z/gZ) (see introduction) one finds that
Fy(J)=ag(Z/qZ), as required. []

4. A Reduction
Let k be a field, and A a finite abelian group. The field k, has
been defined in the introduction. We write 4=~ P@ B, such that |B[=%0
mod char (k) while | P| is a power of char(k).

(4.1) Proposition. The field k is k-isomorphic to a rational field extension
of kg.
Before proving (4.1) we state two lemmas.

(4.2) Lemma. Let Ky K, <--- < K, be a chain of fields of characteristic
p=0, such that for each i with 1 £i=d there is an element u,e K, such that
K,=K,_,(u). Let P be a finite p-group of field automorphisms of K, such
that

(i) the action of P on K s trivial;

(i) o(u)—u,cK, | foralloePand 1Sisd.

Then K¥ =K, (z,, ..., z,) for some z,, ..., z,eK,,.

Proof of (4.2). This lemma is Satz 2 of [16]. For a short proof, see
[33]. 0O
4.3) Lemma. Let K be a field of characteristic p#0, and let P be a
finite p-group. Let M be a nonzero K[ P]-module. Then M* = 0.

Proof. See [42, Ch. IX, Th.2; 6, Ch. 1V, §9;33]. [1

Proof of (4.1). Put p=char(k). Clearly we may assume p=0.

We denote by V the k-vector space inside k({x,lgc A}) generated by
{x |ge A} Clearly, V is a k[ A]-module isomorphic to the left module
k[A]. Let W<V be the subspace W=V". This is a k[Bj-module iso-
morphic to k[B]. Therefore, to prove (4.1) it suffices to show that k(V)*
is rational over k(W)P; here k(W) denotes the field generated bykand W
inside k(V)=k({x,|ge A}). The codimension of W in V is denoted by d;
we have d=|A|—|B|.

By U we denote the k(W)-vector space spanned by V inside k(V).
It is easy to see that U has dimension d+ 1 over k(W), that 1e U, and that
B acts semilinearly on U. Put T=U®. Then from (1.3) it follows that T is
a (d + 1)-dimensional vector space over k(W)? with 1e T,

The definition of T implies 6 T=T for geP, so T is a k(W)5[P]-
module. We choose a sequence of k(W)?[P]-submodules Y of T, for
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0=1=d, such that Y,=k(W)? 1 and such that for each : with 1<:<d
we have

Y_i<Y, and Y/Y,_, 1saone-dimensional vector space over k(I¥)3
on which P acts trivially

Such a sequence (Y,)?_, 1s easily constructed by induction on ¢ just apply
(43)to M=T/Y,_, to find ¥, Of course, ;=T

Let u,eY, be such that Y, as a k(W)5-vector space 1s generated by
Y_yand u, for 1£1=d Let K, be the field generated by k(W)? and Y,

for 021<d Then K,=k(W)? and we claim
(44) K, =k(V)®?

Assume (4 4) for a moment The conditions of (42) are satisfied, by

construction, so
’ KdP:Ko(Zla s Zg)

for some z,, ,z,eK,,or, what 1s the same,
k(WA =(k(VB)F =k(W)P(zy, ,2,)

Countmg transcendence degrees we conclude that k(¥V)* 1s rational
over k(W)2, as required
It remains to prove (4 4) By definition,

K =k(WP(T)=k(W)*(U?),

so the inclusion K,=k(V)? 1s obvious We prove equality by a degree

calculation
Using (1 3) we choose a B-nvanant k(W)-basis {b,, ,b,} for U
Then {b,, ,b,} 15 a k(W)5-basis for U so

K,=k(W)¥(by, .b,)

Therefore [k(V) K< [k(W) k(W)P1=|B|,
and since

[k(V) k(V)®]=|B|
it follows that K, =k(V)® This completes the proof of (41) ]

5. Proof of the Main Theorem

Let k be a field and A a finite abelian group We write AZP®B
as 1 the preceding section By e we denote the exponent of B, and we
put I=k({,) The Galois group of l over k 1s called = As 15 well known,
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the character group D=Hom(B, I*) 15, as an abelian group, 1somorphic
to B (non-canonically) We make D mto a n-module by (o d)(g)=0(d(g))
for cen, deD and geB Let Z” be a free abelhan group with {e,|de D}
as a Z-basis, and make Z” nto a permutation module over 7 by g e, =e,,,
for cen and deD The group homomorphism Z”— D sending ¢, to d,
for de D, 15 n-linear, and we call its kernel J So we have an exact sequence

of r-modules
0—-J—Z? D0

(51) Proposition [12,317 The fields kg and 1(J)* are 1somorphic over
k=1
Proof Let [(x)=1({x,|geB})and k(x)=k({x,|geB}) First we describe
lg=1(x)?
For deD, let
va=(X d@)™" x)elx)

geB

Then I(x)=1({y,|deD}), and the action of B on I{{y,|deD}) 1s given by
g(y)=d(g) y,, for geB and deD

Let Fcl(x)* be the multiplicative subgroup generated by {y,|deD}
Clearly, F 1s Z-free of rank |D|=B| Define the homomorphism ¢ F—D
by sending y, to d, for de D Then

g)=¢()(g) y for yeF and geB
So if yeker(¢p) then g(y)=y for all yeB, 1e yel, This means
l(ker(¢)) =l l(x)=1(F)

The index of ker(¢) in F equals |D| Therefore we find, by excracting
roots successively

[1(F) lker($))]<ID]

But [I(F) I5]=|D| by Galoss theory, so we conclude I{ker(¢))=1, Simce
a Z-basis for ker(¢) 1s algebraically independent over /, the field | (ker(</>))
is 1somorphic to the field of fractions of the group ring of ker(¢) ove: |
This removes a slight ambiguity in our notations, ¢f Section 1

Next we let come m k We let m act on l(x)x] ®, k(x) via the first
factor Then the actions of 7 and B on /(x) commute, so

k= (1007 = (Lx))* = ()"
One eastly checks

o(y)=y,s for oen and deD,
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so F is a sub-n-module of I(x)*, and F~ZP”. The map ¢: F— D is n-linear,
so ker(¢) is a sub-nr-module of F, and clearly ker(¢p)=J. It follows that
there is an l-isomorphism of fields Ip=I(ker(¢))=1(J) which respects
the action of 7. Hence there is an isomorphism

kg=(g = I(J)
over k=[" as required. []

We write .
B=@® (Z/qZ)"® (as abelian groups)
q

with non-negative integers n(g), where g ranges over the set of prime
powers > 1. We define the n-modules I, I, and I; by

L= @ JZ“‘"a

q, g 1s odd

12 — @ I;(q)’

q, p(g) 1s non-cychic

I,= @) Jy@.

a, ¢ 15 even, plg) 1s cyclic

(See Section 3 for the definitions of I, J, and p(g).) Finally, we put
[=1,®]I,.

(5.2) Proposition. The field 1(J)" is I"-isomorphic to a rational extension
of I(N™.

Proof. By a n-set we mean a set E on which n acts as a group. of
permutations (the action need not be faithful). The corresponding
permutation module is denoted by 7L A subset E' of a n-set is called a
n-subset if o(¢')eE’ for all oen and e'c E'.

The decomposition
P B@®(Z/a2)"®
q

gives rise to a decomposition of ©-modules

D=@® (Z/qZ)"?,

each direct summand Z/qZ being a n-module as described in Section 3.

We first consider a direct summand Z/gZ for which p(q) is non-
cyclic. If Z/qZ— D is an injective n-homomorphism identifying Z/qZ
with one of the direct summands, then the resulting injection of n-sets
C(q)=Z/qZ—D (see Section 3 for the definition of C(qg)) gives rise to
a n-linear map Z°@-» ZP. 1t is easily checked that the following diagram
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with exact rows 1S then commutative

0 I, ——— 2D S Z/qZ———0

|

0 J— ZP

» D ——ns ()

Analogously, if p(q) 1s cyclic, and we have a m-homomorphism Z/gZ — L
which 1dentifies Z/gZ with one of the direct summands, then an 1njective
map of n-sets p(q)—(Z/qZ)y* =Z/qZ—D 15 mduced (here the mar
p(q9)—(Z/qZ)* 1s the map ¢, defined m Section 3) The resulung =
homomorphism Z[p(g)] = 29— Z” then makes the following diagram
with exact rows commutative

00— J,—Z[p(q)] »Z/qL 0
0——J — ZP D 0

So with each direct summand Z/gZ of D we have associated a diagram,
and all these diagrams have the same second row Taking the direct sum
of all first rows we find the commutative diagram with exact rows

0—— 1 ®,Bl;—— ZF —— D(Z/qZ)"? ——0
J | J

0— J VA » D

>0

where E 1s some m-set which is a disjomnt union of w-sets of the form
C(g) and p{g), with certain multiplicities Smce 0¢ C(g)<=Z/qZ and
0¢¢,lr(@)<=Z/qZ, the 1mages of these m-sets n D do not overlap
This means that E may be considered as a w-subset of D, and that the
map Z*— Z” 1s myective and has a cokernel N which 1s 1tself a permuta-
tion module over = Since the second vertical arrow 1n the above diagram
1s an 1somorphism, we get an exact sequence of n-modules

0—-I®I;—J->N—-0

in which N 1s a permutation module From (1 6) 1t follows that [(J) 1s
I"-1somorphic to a rational field extension of I(I@I,)* Applymg (3 5)
we find that I(I@1,)" 1s rational over [(I)* This proves (52) ]

(53) Proposition. The field k , is k-1somorphic to a rational field extension

of 1)
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Proof. Combine (4.1), (5.1) and (5.2). [

(54) Proposition. For every subgroup n' =n we have H'(z’, I)=0.
Proof. This follows from (3.1), (3.3) and the definition of I. []

(5.5) Proposition. Let k=K <l be an intermediate field such that pg=
Gal(K/k) is cyclic. Then Fy (1) is Z(pg)-free if and only if the Z(py)-ideal
ag(A) is principal.

Proof. This is immediate from (3.6), the definitions of I, and ag(A),
and the following fact on modules over a Dedekind domain: if a,, ..., q,
are nonzero ideals in a Dedekind domain R, then the direct sum
a;@®---®a, is R-free if and only if the ideal product a,...q,=R is a
principal ideal [187]. 1[I
(5.6) Proposition. The following three assertions are equivalent :

(a) the field I(1,)" is rational over I,

(b) the field I(I,)" is stably rational over I";

(c) condition (i) of the main theorem is satisfied.

Proof. From the definitions of I, and (3.3) it is clear that (2.6) may
be applied to M=1,. Therefore it suffices to prove that condition (c)
of (2.6), with M =1,, is equivalent to condition (i) of the main theorem.
But this is precisely (5.5). 0

Proof of the Main Theorem. First suppose k, Is rational over k.
Then I(I)® is stably rational over k, by (5.3). Using (5.4) and (1.8) we find
I® N, =N, for some permutation modules N, and N, over z. From (1.1)
and (3.2) we conclude that n(¢g)=0 if p(q) is non- cychc that is, we have
proved (ii) of the main theorem. It follows that /=1y, and applying (5.6)

we find that (i) is also satisfied.
Secondly, assume that (i) and (ii) of the main theorem hold. Then

I=1, and (5.6) tells us that [(I)" is rational over I"=k. Application of (5.3)
concludes the proof. [

(5.7) Remark. Note that the proof implies: if k, is stably rational
over k, then k, is rational over k. for abelian A.

6. Supplementary Results

Two extension fields K and L of a field k are called stably isomorphic
over k if there exist rational field extensions Kc: K’ and L I” of finite
transcendence degree, such that K’ and L are k-isomorphic.

Let k be a field, and 4 and A’ finite abelian groups. Write
A=P'®B, B=@®(Z/lqZ)y"?®
q

just as we did for 4 in Sections 4 and 5.
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(6.1) Theorem. Let k be a field, and A and A’ finite abelian groups.
Then k, and k,. are stably isomorphic over k if and only if the following
two conditions are satisfied:

(i) for every intermediate field k< K <k, for which (0.1) holds, the
Z(py)-ideals ag(A) and ayx(A) are in the same ideal class;

(1) if char(k)%2, then n(q)=n'(q) for every power of two q=2° for
which the Galois group of k({,) over k is non-cyclic.

Proof. Analogous to the proof of the main theorem. [J

Following Burnside, we consider a generalization of the problem
posed in the introduction. Let k be a field, 4 a finite group, and V a
finitely generated faithful k[A]-module. The symmetric algebra of V
over k is denoted by S, (V). The field of fractions k (V) of §, (V) is rational
over k of transcendence degree dim, (), and the A-action on V induces
an action of 4 on k(¥) as a group of field automorphisms over h. We ask
under which conditions k(V)* is rational over k. If V has a k-basis which
is permuted by A, this is the question of the introduction. For 4 abelian
and V=k[A4], as k[A]-module, the answer is given by the main theorem.
Theorem (6.4) below gives a partial solution for abelian 4.

(6.2) Proposition. Let V be a finitely generated faithful k[AJ-module,
and W<V a faithful k[ Al-submodule. Then k(V) is rational over k(W)A.

Proof. This follows easily from (1.3). Compare [33]. [

(6.3) Proposition. Suppose AP @B, where |P| is a power of char(k)
and |B|£0 mod char(k). Let V be a finitely generated faithful k[ AJ-
module. Then V¥ is a faithful k[BJ-module, and k(VY' 1s rational over
k(V)P.

Proof. We show that V* is a faithful k[B]-module. Let be B, with
b= 1. Then (b—1) V'is a nonzero P-module, so by (4.3) there is a nonzero
element we(b—1) VA VF, say w=(b— 1) v. Let m be the order of b. Then
b-w=w would imply m-w=(b""1+--+b+1)w=(b"—1)v=0, but
m- 120 in k, so w=0, contradiction. Hence b - w=w, and V7 is faithful
over k[B]. The proof that k(V)" is rational over k(V")* follows exactly
the same lines as the proof of (4.1). [

(6.4) Theorem. Let k be a field, A a finite abelian group, and V a finitely
generated faithful k[ A]-module. Then k(V)* s stably rational over k if
and only if k, is rational over k. Moreover, if dimy(V)2|A|, then k(v )
is rational over k if and only if k(V)* is stably rational over k.

Proof. Write A=P@®B as in (6.3). Combination of (6.3) and 6.2)

(with W= V*) shows that k(V)* and k(V')? are k-isomorphic, so it suffices
to do the case 4= B, i.e. |A|%0 mod char(k).
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By (6.2), the field k(V @k[A])* is rational over both k(V)* and k,,
so k(V)* and k, are stably isomorphic over k. Also, by (5.7), the field k,
is rational over k if and only if it is stably rational over k. We conclude

that k(V)* is stably rational over k if and only if k, is rational over k.
t

Finally, assume dim, (V)2 |4|. We may write V=@ V;"® over k[A4],
1=1

where each V; is an irreducible k[ A]-module, n(i} is a positive integer,
i
and V; and V, are non-isomorphic for i=j. Put W= @ V,. Then Wis a

i=1
faithful k{A]-module, and there are injective k[AJ]-homomorphisms
W—V and W—k[A]. Therefore k, and k(V)* are both rational over
k(W)4. Since dim, (V)=|A], it follows that k(V)* is k-isomorphic to a
rational extension of k,. Application of (5.7) completes the proof. [

The argument in our solution of the case V=k[A] which does not
carry over to the general case is the proof of (5.2). But by exercising a
little more care one can show that the bound |A4[ in (6.4) may be replaced
by |A|— @ (A4)|, where #(A4) denotes the Frattini subgroup of 4 (i.e., the
intersection of the maximal subgroups of A).

7. Corollaries

We note some consequences of our main theorem. Some of them
appeared already in [10, 48].

(7.1) Corollary. Let k be a field and p a prime number. The splitting field
of X7 —1 over k is denoted by I, and d=[1:k]. Then ky,,, is rational over k
if and only if the ring Z[{,] contains a principal ideal of index p.

Proof. We may assume 23 p=char(k). By the main theorem, kz/pz
is rational over k if and only if a;(Z/pZ) is a principal ideal of Z(p,).
This implies (7.1), since a,(Z/pZ) has irdex p in Z(p,)=Z[{,] and since
any two ideals of index p in Z[{,] are conjugate over Z. []

(7.2) Corollary. Let n=1 be an integer. Then Qg,,z Is rational over Q
if and only if the following two conditions are satisfied:

(i) the integer n is not divisiblc by 8;

(i) for every divisor q of n of the form q=p°, with p an odd prime and
s a positive integer, the ring Z{ ] contains a principal ideal of index p;
here p(g)=p°"" - (P—1)-

Proof. This is just a translation of the main theorem for this case. [
(7.3) Corollary. Let k be a field and A a finite abelian group such that
the exponent of A divides

92.3m.52.72.11.13-17-19-23-29-31-37-41-43.61-67-71
for some non-negative integer m. Then k, is rational over k.
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Proof. It suffices to show that for each odd prime power g =p* dividing
the exponent of A4 the ring Z[{, ] contains an element of norm p. This
has been done in [10].

(7.4) Corollary. Let k be a field and A a finite abelian group such that:
(i) for every odd prime p which divides the exponent of A, the splitting
Jield of X?—1 over k has degree 1 or 2 over k;
(i1) if r is the highest power of 2 dividing the exponent of A, then the
splitting field of X"—1 over k is a cyclic extension of k.

Then k, is rational over k.

Proof. This follows from the main theorem and the remark that
1—{, 18 an element of norm p in the ring Z{{,]1=2Z[{, ], for every
odd prime power p'. 1

Corollary (7.4) confirms a conjecture of Kuniyoshi [32] for p#2;
for p=2 the conjecture is false.

(7.5) Corollary. Let k be a field and A a finte abelian group. Assume that
condition (ii) of the main theorem is satisfied. Then there exists a rational
field extension k< L of finite transcendence degree, and a Galois extension
Lc L, such that Gal(L/L)= A.

Proof. Let e be the exponent of A, and let | be the splitting field of
X¢—1 over k. Denote by h the lowest common multiple of the class
numbers of the rings Z(py), where K runs over the fields k< K <] which
are cyclic over k. Put G=A" Then the main theorem implies that k,
is rational over k. Hence we can take L=k, and L equal to a suitable
intermediate field kg = L= k({x,|geG}). 0

(7.6) Corollary. Let k be a field, which, as a field, is finitely generated
over its prime field. Let B, denote the set of prime numbers p for which
kg7 is rational over k. Then F, has Dirichlet density O inside the set of all
prime numbers.

Proof (sketch). We need some algebraic number theory [26].

First we consider the case char(k)=0. Then_ [k({,):k]=p—1 for all
but finitely many prime numbers p, so by (7.1} it suffices to do the case
k=Q.

For a prime number m, let K, =Q((,), let L, be the Hilbert class
field of K, and let h(m)=[L,:K,,] be the class number of K,,. We put

S,,=1{p|p is a prime number, which either splits completely in L, ,
or does not split completely in K, } L {m}.

We claim K, <S5, for every prime number m. In fact, if peR, is a prime
number unequal to m which splits completely in K,,, then m|p—1; but
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by (7.1) the ring Z[{,_,] contains a principal ideal of norm p, and there-
fore also Z[{,] contains a principal ideal of norm p. This means that p
splits completely in L,,, as required.

Using Tchebotarev’s theorem and an easily proved linear disjointness
statement, we find that for any finite set M of prime numbers the set
(\ S,, has Dirichlet density

meM
[T~ (hm)—1)/h(m) - (m~1)).
meM
Since h(m)=2 for all prime numbers m=23, cf. [29], it follows that
() S, has Dirichlet density 0. Therefore also the subset B, of [ S,

mprime m prime

has Dirichlet density 0.
The case of nonzero characteristic is slightly more complicated. We
may assume that k is a finite field, say k=F,, where g=r" and r=char(k).
For a prime number m, let K,,, L, and h(m) be as above, and put
E, =K, (q""™). We define:

T,,={p|p is a prime number, which splits completely in L,,,
or splits completely in E,,
or does not split completely in K,,} v {m,r}.

We show R, T, for every prime number m. Namely, assume that pePR,
does not divide mr and splits completely in K,,. We distinguish two cases.
If the order of (¢ mod p)eF; is divisible by m, then [k((,):k] is divisible
by m. Using (7.1), we then conclude in the same way as for k=Q that p
splits completely in L,,, so peT,. On the other hand, if the order of
(g mod p) in F¥ is not divisible by m, then it is relatively prime to m, so
(g mod p)is an m-th power in F,. Since w ¢ assumed that p splits completely
in K,,, this implies that p splits completely in E,, so peT,,, as required.

If M is any finite set of prime numbers m not dividing n - . the Dirichlet
density of () T,, is

e [T (1 —(h(m)=1)/h(m)- m).

meM
Hence T,

m prime, n does not divide nr

has Dirichlet density 0, so the same is true for §. [

Finally, we remark that for k=F, the set £ contains all Mersenne
and Fermat prime numbers.
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