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Simple abelian varieties having a prescribed formal isogeny type.

Hendrik W, Lenstra jr. and Frans Oort.

1. Introduction.

In general a splitting of the isogeny type of the formal group of an abelian
Variety should not give an analogous splitting of the isogeny type of the

abelian variety. Honda gave an cxample of an abelian surface (in characteristic p)
where the formal group up to isogeny splits into two different factors, but

such that the abelian variety is simple (cf. [3], page 93). However Manin asked
whether it could be possible that the isogeny class of any abelian surface with
no points of order p {(the analogue of supersingular elliptic curves) is split
(ef. (41, page 79, linc 16 from below). Surprisingly the question by Manin has a
Positive answer in any dimension: a "supersingular' abelian variety is isogenous
to a product of elliptic curves (cf. [51, theorem 3.2). However this is the only
exception to the general principle alluded above: in this paper we prove that

for any formal isogeny type which has at lcast one factor different from Gh1
(the condition t > O 1in section 2 below), therc exists a simple abelian varicly
having this isogeny type for its formal group.

Using the classification, due to Honda and Serre, of isogeny classes of abelian
Varieties over finitc fields with the help of Wcil numbers, in fact a proof of

this is nothing but an excercise in algebraic numbcr theory.

Notations: We fix a prime number p. For an abelian variety A we denote by X
its formal group, and we freely use the cla.silication of such formel groups over
an algebraically closcd field of characteristic p as given by Manin (cf. (4],
IT.h.)., We use ~ +to indicate the isogeny relation. By ( we denote an algebraic
closure of the primc ficld in characteristic p; by Ig we denote the field

having g elemcnts.

2. _The construction of a simple abelian variety.

Let (n-).JC s (m.).L be two sequences of integers such that
171=1 171=1
t >0
L. > m. 20 for 1 <1<t
1 1
(nia mi) = 1 for 1 <1<t (so n = 1 1f m, = 0),

&ad let h be a nonnegative integer.
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We want to construct a simple abelian variety A over { such that

- . A
Anv (.86, ) + . (G + G ) + h.c¢C
ml-;%j 1,0 m:'-; ni :vmi mi ﬂni 1,1
1 1
Put
g = iz1 (n; + )+ n.

In section 3 we shall construct two field cxtensions O c XKL such that:

(2.1)  [x: @] = g;

(2.2) ¥ is totally real;

(2.3)  there are no intermediate fields @ ; X' g K,
(2.4)  +the prime ideal Tactorization of p in K 1is
n.+m.

(P)=<l§1 :Q_ll l) ° (J§1 QJ)a

where D> gj are different prime ldeals in the ring of integers in X.
and all residue class degrees f(Ei/(p>) and f(gj/(p)) are 1;
(2.5) [L : X] = 2; let the nontrivial K-automorphism of L be denoted by p3
) L is totally imaginary (i.e. there is no field homomorphism L -+ R );
(2.7)  either g = 1, In which case t =1, n,=1,m =0, h=0 and K =g,
or K # @, and then there is no r € § for which L = K(/r);
(2.8)  +the primes B; (1 <1 <t) eplit completely in L:

p; = o-oplrg), oz Foelzg),
and the gj (1 €3 <h) ramify:
2 _
.= 3. s. =pls.).
45 T =5 =3 5;)

By (2.2) ana (2.5), (2.6), L is a CM-fiecld [3]. Let the ideal in L

o

be defineq by
n. .

a = -ﬁ (r.b . . .
L A | =1 J=

©
—
a4
N
)
~—
-
=i
—
wn

Then we have

a . ota) = (p),
SO a is an '"idcal of type (Ao) of order 1" (terminology from £31),

(2.9) Lemma,,

12:9) Lenma
Let v > 0 pe an integer, ond suppose 7 ¢ L is an algebraic integer for which

Y

meolm) =p°,  (n) =a".

vV
Then 1 = g(r).

23992 of (2.9). We first show
(2.10) T é K.



In fact, 7 ¢ K would imply WE = q.plm) = pv, 80 ‘?v = (wg) = (p)v,

which means

TS S TR TR vagms) o(;.)V(ni+mi)> £
1=1 ‘= =1 J=1T =3 1=1 g J=1 =
This contradicts unigue factorization, since t > 0, n, >mn r. #plr. ),

v # 0, so (2.10) is proved. Tt follows that

(2.11) L = x(m).
If K =(, we are done. So assume K # f. We assert
(2.12) m+ p(m) ¢ @

Otherwise we would have 7 + p(7) € @ and 7.p(7) = p° ¢ @. But then = is
imaginary quadratic over @, so @(n) = @(Vr) for some r e §. By (2.11) this
implies L = k(/r), r € @, contradicting (2.7).

This proves (2.12).

We do have 1 + p(m) = TH'I/K(wg € X, so (2.12) and (2.3) yield
K=q(n + p(n)). Using p(m) = 3;- we find
Y]

G(m) = @(r + B;J(ﬂ) = @(m + o(m))(7r) = K(m) =1L,
thus proving (2.9).

By lemma 1 of [3] there exists a v e %, v > 0, and an algcbraic integer

T € L. such that

T.p(w) = pv, (m) = a”.

Applying (2.9) to 7w we find
(2.13) Q(ﬂu) = 1, for every integer w > O.
In the terminology of [3] this means

29

L=qla) =a(").

Let A be a simple abelian variety over B%v corresponding to m, by the
main theorem of [37. We show that A satisfies our requirements. As in [6],
we put

P\)

= [k A).
EndM(ﬂ%V)(A) @9 Dndpg (a)
We identify w with the Frobenius endomotrphism T, € EndM(IFv)(A)'

(2.14) Lemma.
EndM(E%V)(A) = g(n).



T

Proof of (2.14). E = EndM(IFv)(A) is a division algebra with center O(m) = L.
To show E = L it suffices t8 check that E splits locally everywherz. This is
done with the help of théoréme 1 of [67:

(a) by (2.6), T doecs not have real places;

(b) E splits automatically at finite places v wnot lying over P,

(e) let v 1lie over p. If v corresponds 1o I.o then

. - v(m) ni-v -
R) = ——= . LL_ S . 4. ) = n. =0 meod 1.

lan(E) v L]V Qp] (n.+m.).v (nl ml) oy

V( ) 11
Similarly, for p(zi) we get
1nvv(E) =mg 20 mod 1.
If v ’belongs to 3., then
. _ v(m) g v ) _
1nvv(E) = LLV : 1= RV o =120 mod 1.

v(p") P -V

This proves (2.14).

From (2.14) it follows that the characteristic polynomial of the Frobenius
endomorphism is equal to the irreducible polynomial of T over @. Since we
know all p-adic values of T, we can apply theorem (4.1) of [4] to compute
A, We find

K n ( ié & (¢ + G ') + h.G
m:

G, ) + .8

6 1,0 mi;& n.,m. m..n
as desircd.

Let M Dbe a positive integer. The degree of the charrcteristic polynomial of
ﬂx is equal to

.

2.dim A =1[8 : 1) . [L : @] =[L : Q] =2g.

By (2.13) it follows that this polynomial is irrcducible over . Hence A

remains simple over I%vp , Tor every u. Wo conclude that A remains simple over

2, as required.

3. The construction of the desired C(M-Tield.

For a field F, let Mon(g, T) denote the set of monic polynomials of degree g
over F. If F 1is a topological field, Mon(g, F) has a natural topology such
that Mon(g, F) g:Fg as topological spaces.
Suppose T e Mon(g, ®) satisfies
(3.1) £ has g rcal zcros;
(3.2) the Galois group of the splitting field M of f over @ is isomorphic
to the full permutation group S _ of order gi;

. Hon.+m?) . h
(3.3) g ox1/e a ) v Gloa 7)) gt

Vel
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Then K = QLXI/f O[X] is a field (by (3.2)) which obviously satisfies (2.1),
(2.2) and (2.4). We assert that also (2.3) holds. In [, -t, the intermediate
field @ < K < M corrcsponds to the subsroup §_ 2 S > {1}. Since there are

=1

no subgroups © 5 2 H 2 S (2.3) follows by Ca101s theory.

g-1°
Let p,, Dg, p; b. three rational primes, differcnt from p.
Choose monic polynomials £, f,, £ ¢ %] of degrec g such that

(3.4) (:f‘1 mod p1) is irreducible over IF

(3.5) if g > 2, then (f_. mod p2 e IF [%T is the product of a linear factor

and an irreducible ?aetor of degrée g - 13
(3.6) if g > 3, then Ty e ﬂ; [¥] 1is the product of an irreducible quadratic
factor and one or two di?fcrent irrcducible factors of odd degree.
By [7, §661, condition (3.2) is satisficd if for i =1, 2, 3 we have:
(3.7)i the coefficients of f are integers at D, and f 2 fi mod p. .
So to construct K, it suffices to show that conditions (3.1), (3.3), (3»7)13293
can be satisfied simultaneously.

Each one of the gsets

U-_1 = {f e Mon(g, ) | (3.1) holdst,
UO = {f e Mon(g, )1 (3.3) nholds},
u; = {f ¢ Mon(g ®~)'( ). holds} (i =1, 2, 3)
is nonempty and open (cff L1, ch. 2, §6] for UO). By the approximation theorem

L1, ch. 1, 8§41, Mon(g, @) is dense in
Mon(g, T x Mon(g, @) x 1, Mon(g, 0 )
- L) .
under the natural inclusion. Hence there c¥ists a polynomial
f e Mon(g, @) n i=ﬁ1 u; -
Therefore, a field K satisfying (2.1) - (2.4) exists.

Next we comstruct L . If K # @, let L5 L, be different primes of X
lying over the same rational prime &, £ # p. Such £ and &i exist, cf. L[2],
Let v_ denote the normalized ecxponentiai valunbion at the prime p. By the
approxgmation theorem, there exists an a € K such that:

(3.8) if X # @&, then ) (a) # v, (a) mod 2,
9) v (a)=1 (155 %tn); 7
10) agjis a squarc in cach of the local fields KE:” 153 £ %,

(3
(3
(3.11) 9(a) < 0 for every field homomorphism o : K 3 R.

From (3.8) we sce a ¢ O . K> it K # 0. Therefore L = K(Ya) satisfies (2.5)
and (2.7). Also (2.6) and (2.8) hold, by (3.11) and (3.9), (3.10). This

finishes the construction of L and K.
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