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Simple abelian varieties having a prescribed formal isogeny type.

Hendrik W. Lenstra jr„ and Frans Oort.

1_. Introduction.

In general a Splitting of the isogeny type of the formal group of an abelian

variety should not give an analogous Splitting of the isogeny type of the

abelian variety. Honda gave an example of an abelian surface (in charactcristic p)

where fche formal group up to isogeny splits into two different factors, but

such that the abelian variety is simple (ef. [3!, page 93). Hovever Manin asked

vhether it could be possible that the isogeny class of any abelian surface with

no points of order p (fche analogue of supersingular elliptic curves) is split

(cf. TU], page 79, linc 16 from below). Surprisingly the question by Manin has a

positive an s vor in any dimension: a "supersirigular" abelian variety is isogenous

to a product of elliptic curves (cf. [^1, bheorem 3.2). However this is the only

exception to the general principle alluded above: in this paper we prove that

for any formal isogeny type which has at Icast one factor different from G
l 5 l

(the condition t > 0 in section 2 below), there exists a simple abelian variety

having this isogeny type for its formal group.

Using the classification, due to Honda and Sorre, of isogeny classes of abelian

varieties over finitc fields with the help of Weil numbeis,, in fact a proof of

this is nothing but an excercise in algebraic number theory.

Notations: We fix a prime number p. For an abelian variety Λ we denote by Λ

its formal group, and we freely use the cla^sification of such formal groups over

an algebraically closcd field of characteristic p äs given by Manin (ef. | h],

H.l|.). We use ^ to indicate the isogeny relation. By Ω we denote an algebraic

closure of the primc field in characteristic p; by IF we denote the field

having q elemcnts.

£L-_The construcbion of a simple abelianvariety.

(n.)._ , (m.).t be bwo sequences of integers such that
i i—1 i i—1

t > o

n^ > m. ä o for 1 < i < t

(n.s m.) = 1 for 1 < i < t (so ru = 1 if m.̂  = 0),

let h be a nonnegative integer.



We wanfc to construct a simple abelian variety A over Ω such that

A ̂  (.IL G, J + .|L (G + G ) + h . G

l

Put

= -L (n. + m.
1=1 ι ι

+ h.
i i'

In section 3 we shall construct two field extensions dj c K c L such that:

(2.1) [K : « = g;

(2.2) κ is totally real;

(2.3) there are no intermediate fields QJ 5 K1 ς K;

(2.4) the prime ideal factorization of p in K is

n. +ni.

<p) = (i, Ej1 *> . (i, V-

where p_. , £. are different prime ideals in the ring of integers in K,

and all residue class degrees f(p_./(p)) and f(£./(p)) are 1;

(2-5) [L : K] = 2; let the nontrivial K-automorphism of L be denoted by p;

(2.6) L is totally imaginary (i.e. there is no field homomorphism L + 3? );

(2.7) either g = l,, Jn which case t = 1 ,, HI = 1 , m = 0, h = 0 and K = ^3

or K Φ φ, and then there is no r e 3J for which L = K( /r");

(2.8) the prime s p. (1 < i < t) split completely in L:

p, ~ r. . p (r- ), r. 5* p(r. ),
i —i —i i i

and the £. (1 < j < h) ramify:

Β̂  (2.2) and (2. 5), (2. 6), L is a CM-ficld Γ 3]. Let the ideal a. in L

"be defined by

***& '̂  · Pi-)") - jfi, - -

Then we have

a . PU) = (p),

80 ä is an "ideal of type (AQ) of order 1" (terriinology from [3]).

et v > o be an integer, nnd suppose π c L is an algebraic integer for which

L = Ο),(π).

Of (2.9). We first show

T T / K .



In f act , π e K would imply ττ = ττ.ρ(ττ) = p , so a_ = ( π ) = (ρ),

which means

t , 2Vni . 2V% h 2v t , V(ni+K'i) . ,v(Vni\ h 2v
iSl (li · PiZi) ) · ̂  s. = & (r.. . p(r.) ) . .g, s. ,

This contradicbs unique factorization, sinco t > 0, n > m, , r. ̂  p(r „ ) ,
l l — l — l

v ?ί 0, so (2.10) i s proved. It follows t hat

(2.11) L = K(ir).

If κ = ̂  5 we are done. So assume K ·£ 3J„ We assert

(2.12) π + ρ(ττ) ̂  ̂ .

Otherwise we would have π + ρ(ττ) e QJ and ττ.ρ(ττ) = p e QJ. But then fr is

imaginary quadratic over QJ, so ^(ir) = Qj(/r) for some r e (ξ. By (2.11) this

implies L = K(/r), r e ,̂ contradicting (2.7).

This proves (2.12).

We do have π + ρ (π) = Tr . (π) e K, so (2.12) and (2.3) yield
L/ Ά. v

K = (̂ττ + p(ir)). Using ρ(π) = -̂ — we find
v ττ

OJ(TT) = OJ(TT + ̂ -)(ττ) = tB(if + D(TT))(TT) = Κ(ττ) = L,

thus proving (2.9) ·

By lemma 1 of [3J there exists a v £ Χ, v > 05 and an algebraic integer

π e L such that

π. ρ (π) = pV3 (TT) = aV.

Applying (2.9) to ττμ we find

(2.13) m(ir ) = L for every integer μ > 0.

In the terminology of [3] this means

L = (a00 = π0".

Let A be a simple abelian variety over IF v correcpondinc to ττ , by the

raain theorem of L3l° We show that Λ satisfies our requirements . As in [6],

we put

(A) ̂ 8 End (A).

identify ττ with the Frobenius endomocphistn. -rr e End , \(A).

PV'

Lemma.
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Proof of (2.1U). E = End , JA) is a division algebra vith center QJ(TT) = L.

To show E = L i t suffices tS check that E splits local ly everywhers. This is

done with the help of theoreme 1 of L 61:

(a) by (2.6), L does not have real places;

(b) E splits automaticaJLly at finite places v not lying over p,

(c) let v lie over p. If v corresponds to r__. , then
n i -v α ·

. LL s 0) ] » - . (η,Μη.) = n. Ξ 0 mody .

v(p ) * i i'

Similarly, for p (r̂  ) we get

inv (Έ.) = m^ = 0 mod 1 .

If v belongs to _s.9 then

inv (E) = ̂^ . CL : Q l = -£- . 2 = 1 = 0 mod 1 .

v(PV) V P 2-v

This proves (2. ll|) .

From (2.1 U) it follows that the characteristic polynomial of the Frobenius

endoTiorphism is equal to the irreducible polynomial of IT over QJ. Since we

know all p-adic values of IT, we can apply theorem (U.1) of CU1 to compute

A. We find

.1, G, J + .$, (G + G ) + h.G, 1
i=l 1,0 i=,l n.,m. m.,n. 1,1
.=0 3 m->0 ι' ι ι ι

äs desired.

Let y be a positive integer. The degree of the char-cteristic polynomial of
u

TT 3 s equal to
·"· i

2.dim A = ΓΕ : L]^ „ TL : ajl = fL : (ξ! = 2g.

By (2.13) it follows that this polynomial is irreducible over Q. Hence A
•

remains simple over 3Fvy , for every μ. We conclude that A remains simple over

Ω , äs required.
\

3. The construction of the desired CM-fiold.

For a field F, let Mon(g, F) denote the set of morde polynomials of degree g

over F. If F is a topological field, Mon(g, F) has a natural topology such

that Mon(p·, F) ̂  F^ äs topological spaces .

Suppose f e Mon(g, 8J) satisfies

(3.1) f has g real zcros;

(3.2) the Galois group of the Splitting field M of f over 3J is isoinorphic

to the füll pemutation group Ŝ  of Order gl;

p



Then K = flj[X]/f φ[Χ] is a field (by (3.2)) which obviously satisfies (2.1),

(2.2) and (2.h). We assert that also (2.3) hold s. In f, ̂ t, the intermediate

field 3J c κ c M corresponds to the sub^roup S => S => {l}. Since there are

no subgroups S 3 H 3 S , (2.3) follows by Galois theory.

Let p , p„, p- b, three rational primes,, differont from p.

Choose monic polynomials f f f e zCxJ of degree g such that :
> *- ~J

(3.M (f. mod p ) is irreducible over IF ;

(3-5) if e > 2 a then (f mod p ) e IF L"il i s the product of a linear factor
2 ^ P)

and an irreducible factor of degree g - 1 ;

(3.6) if g > 3, then f_ e F ΓΧ] is the product of an irreducible quadratic
3 p

factor and one or two different irreducible factors of odd degree.

By [?, §66], condition (3.2) is satisfied if for i = 1, 2, 3 we have :

(3.T)· the coefficients of f are integers at p., and f Ξ f_. mod p..

So to construct K3 it suffices to show that conditions (3.1), (3.3), (3.7 L 9 τ
l 3 C. , J

can be satisfied simultantously.

Each one of the sets

U_1 = {f € Mon(g5 IB) | (3.1) holds),

Uo = {f e Mon(g5 tu ) l (3.3) holds} ,

Ui = {f c Mon(g, tu )|(3.7)i holds} (i - 1, 2, 3)

is nonempty and open (cft [1, eh. 2, §61 for U ). By the approximation theor-em
o

[1, eh. 1, §4], Mon(g, (ξ) is dense in
O

Mon(g, T$ x Mon(g, QJ ) x .Π Mon(g, Q )
P ι-ι P^

Under the natural inclusion. Hence there cxists a polynomial

f e Mon(g, 3J) n ._n U. .
l—" l X

Therefore, a field K satisfying (2.1) - (2.U) exists.

Wext we construct L . If K φ 3J, let Ä, , £0 be different primes of K_| ^ JT

lying over the same rational prime S-, £ φ p. Such A and _&. exist, cf. C2J,

Leb v denote the normalized exponential valuafcion at the prime p_. By the

approximation theorem,j there exists an a, c κ such that:

(3.8) if K j« (ς, bhen Y£ (a) ? VÄ (a) mod 2;

(3.9) v (a) = 1 ( 1 ^ fi h); ~2

(3.10) a '-'is a square in each of the local field s K , 1 ä i < t;
i

(3.11) cr(a) < 0 for every field homomorphism σ : K -> IR .

O -"·-·
From (3.8) we see a i 31 . K if K t $* Therefore L = K(/a) satisfies (2.5)

and (2.7). Also (2.6) and (2.8) hold, by (3.11) and (3.9), (3.10).This

finishes the construction of L and K.
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