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PACS 05 45 Mt - Semiclassical chaos (“quantum chaos”)
PACS 05 45 Pq — Numerical simulations of chaotic models
PACS 03 65 Yz — Decoherence, open systems, quantum statistical methods

Abstract. — The Loschmidt Echo A/({) (defined as the squared overlap of wave packets
evolving with two slightly diffeient Hamiltonians) 15 a measure of quantum reversibihty We
mvestigate its behavior for classically quasi-integirable systems A dominant 1egime emerges
where M (1) o< t7" with a = 3d/2 depending solely on the dimension d of the system This
power law decay 1s faster than the result o« ¢t~ for the decay of the overlap of classical phase
space densities

The seaich for quantum signatures of chaos has provided much msight mnto how classical
dynamics manifests 1tself in quantum mechanics [1,2] The basic question 1s how to determine
fiom a system’s quantum pioperties whether the classical lnmit of 1ts dynamics 1s chaotic o1 1eg-
ular One very successful appioach has been to look at the spectial statistics, in particular the
distribution of level spacings [3] An altogether different appioach, advocated by Schack and
Caves [4], has been to mvestigate the sensitivity of the quantum dynamics to pertuibations of
the Hamultoman Tlus appiroach goes back to the eaily woirk of Peres [5] and has attiacted new
mtetest 1ecently in connection with the study of decoherence and quantum 1eversibility [6-12]

The basic quantity in this approach 1s the so-called Loschmidt Echo, 2 e the fidelity

M (t) = |{tho] exple Ht] exp[~Hot]|vo) | (D)

with which a nailow wavepacket 1y can be 1econstiucted by mverting the dynamics after a
time ¢ with a perturbed Hanultonian H = Ho-+V [5,6] (Weset i = 1) The fidelity quantifies
the sensitivity of the tume-1eveisal opeiation to the uncertainty m the Hamiltonian, and thus
provides for a measuie of quantum reversibility

To date, most mvestigations of A/ (¢) focused on classically chaotic Hamiltomans H and
Hj [6-10] Oune notable exception 1s the oniginal paper by Peres [5], who noted that the decay
of M{t) 15 slower 1n a 1egular system —but did not quantify 1t fuither  'We will show 1 this
article that m a 1egular system, and under certamn i1andomness assumptions on the choice
of the pertwbation V (to be specified below), a dominant 1egime emeiges wheie A (¢) has a
powel law decay oc t34/2 with an exponent depending solely on the dimension d of the system
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This power law decay establishes the higher degree of quantum reversibility of regular systems
compared to chaotic ones, where M (¢) decays exponentially. This trend is as expected from
classical reversibility (defined in terms of the decay of the overlap of classical phase space distri-
butions [13]). However, we find that quantum mechanics plays a crucial role in regular systems
by inducing a parametrically faster power law decay oc t~3¢/2 than the classical one o t=<.

We consider the generic situation of a regular or quasi-integrable Hy and a perturbation
potential V' that has no common integral of motion with Hy. (By regular or quasi-integrable
we mean systems with a phase space dominated by invariant tori.) This condition ensures
that, classically, the perturbation has a component transverse to the invariant tori almost ev-
erywhere in phase space, and we will assume that this transverse component varies sufficiently
rapidly along an unperturbed classical trajectory. Our investigation will moreover focus on a
regime of sufficiently strong perturbation (defined below), where one expects a fast decay of
the perturbation correlator. This regime is to be contrasted with the linear-response regime
considered in ref. [11].

We follow the semiclassical approach of Jalabert and Pastawski [6]. We start from a
Gaussian wavepacket ¥o(ry) = (702)~ 44 explipg - (rh — 7o) — |rh —T0|?/20?] and approximate
its time evolution by

expliHto(r) = [ dry > KL r,ristalrd), (@)

KH(r vl;t) = CY2expliSH(r,rl;t) — impus/2). (3)

The semiclassical propagator is expressed as a sum over classical trajectories (labelled s)
connecting 7 and 7§ in the time t. For each s, the partial propagator contains the action
integral S (r,r);t) along s, a Maslov index g, (which will drop out), and the determinant
C, of the monodromy matrix. Since we consider a narrow initial wavepacket, we linearize the
action in 7§ —r¢ and perform the integration over rj. After a stationary phase approximation,
the semiclassical fidelity reads

2

M(t) = (4w /drZKf(r,ro;t)*KSH"(r,ro;t)exp[~02|ps—polz] , (4)

with initial momentum p; = —8.S;/0rg.

Equations (2)-(4) are equally valid for regular and chaotic Hamiltonians, as long as semi-
classics applies. Squaring the amplitude in eq. (4) leads to a double sum over classical
paths s and s’ and a double integration over coordinates » and r’. Accordingly, M (t) =
MO () 4 M@ (2) splits into diagonal (s = s’) and nondiagonal (s # s’) contributions. The
diagonal contribution sensitively depends on whether Hy is regular or chaotic. Reference [6]
found that M (d)(t) o exp|—At] for chaotic dynamics, with A the Lyapunov exponent. We
will show that the decay turns into a power law M (D (¢) t=34/2 for regular dynamics. The
nondiagonal contribution, on the contrary, is insensitive to the nature of the classical dynam-
ics (set by Hyg), provided the perturbation Hamiltonian V' has no common integral of motion
with Hy. References [6,7] found that M ™9 (¢) o« exp[—T¢] for chaotic dynamics, and ref. [7]
identified I" with the golden-rule spreading width of an eigenstate of Hy over the eigenbasis of
H. (This golden-rule decay requires that I" is larger than the level spacing A, but smaller than
the bandwidth [7].) We will see that the same exponential decay of MV (¢) holds when Hy
is regular, so that MYV (¢) always dominates in the long-time limit. Consequently, the fidelity
decays exponentially, « exp[—min(I', A\)¢] for chaotic systems, while for regular systems the
decay is algebraic, o< t739/2 as is then set by the diagonal contribution. The golden-rule width
T still determines the regime of validity of the power law decay via the condition I" > A.
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Contimuing fiom eq (4), and still following 1ef [6], we wiite M (t) as

M(t) = (47r02)d/dr/dr’ZC’SC’S« exp [1655(r, 1o, t) — 1885 (7', 70,1)] X

s s’

x exp [ — o?|ps — po|* — o |ps — pol?], (5)

with §Ss(r,70,t) = SH(r ro,t) — SHo(r 7, t) Consideing first the diagonal contiibution
M{O(t), we set s = s" and expand the phase difference as

§8s(r, 1o, t) — 6Ss(r' ro,t) = /0 dt VV[q(#)] (q(f) — q’(f)) (6)

The pomnts g and ¢ lie on the classical path with ¢(t) = r, ¢’(¢) = 7/, and q(0) = q'(0) = g
In a1egular system, the distance between two mitially close points mcieases lineaily with time,
lg(t) — q'(t)| ~ (¢/t)|r — r'| Heire we depait fiom the exponential diveigence o exp[A(f — t)]
assumed m 1ef [6] for chaotic dynamics

The spatial mntegrations and the sums over classical paths i eq (5) lead to the phase
avelaging

exp[16Ss — 165 — (exp[1dSs — 105,]) ~ exp —%((553 ~ 855 (7)

The phase averaging 1s justified by owr assumption that V vaiies 1apidly along an unpertuirbed
classical tiajectory Smmce V and Hp have no common integial of motion, we may expect a
fast decay of the coirelations,

(0.V]g®)]0,Vig()]) = Ud, 6(t &) (8)

One then gets

t
MWD) = (47702)d/dr/dr’ZC§ exp [_ lU/ df(f/t)2|r—r’]2] X
S 2 0
x exp [ — 20%|ps — pol]

(4m2)d/d7’+/dr~ch exp [ﬁ %Utri] exp [ —20°|ps —pol’]  (9)

Il

The Gaussian mtegiation ovel r— = r—7r' ensuies that » ~ v/, and hence ry = (r4+v')/2 = r
One C; 1s then absoibed by a change of vaiiable fiom 7, to p,, and the Gaussian ntegral
over T_ gives a factol o t~%/2 Finally, setting Cy ~ t~% as 1s the case 1 a 1egular system,
we allive at

MWD (t)y o t73¢2, (10)

which 1s the central 1esult of this paper The power law (10) holds once the pertuibation 1s
stiong enough to mduce a golden-1ule spreading of the eigenstates of Hy over the eigenbasis
of H (which 15 the 1ange of vahdity [6,7] of the above semiclassical approach), and under the
assumption that the peituibation potential vaiies 1apidly along a classical tiajectory of Hy
The decay exponent 3d/2 1s msensitive to the choice (8) of a o-function force correlator Even
a power law decaying coirelatol oc [£ — |7 (with a > 1) 1esults in the same exponent as m

eq (10)
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The nondiagonal contubution (s # s’) to eq (5) 15 the same as m 1efs [6,7] The phase
averaging can be perfoimed sepaiately for s and s’ and one gets

(exp[10.9s)) = exp [— %(655)} = exp [~ %/0 df/o At (Vg V]g(#))) (11)

The pomt g(t) lies on path s with ¢(0) = rg and ¢g(t) = r If V and Hp have no common
mtegial of motion, the correlator of V' gives the golden-1ule decay o exp{—T't], regardless of
whether Hy 1s chaotic o1 1egular [14] We conclude that for 1egular systems, the fidelity 1s
dominated by the algebraically decaying diagonal contitbution

In order to check numenically the analytical 1esult (10), we have studied the kicked top
Hamiltonian [1]

Hy = (r/27)S, + (K/25)S2> " 5(t — n7), (12)

which describes a vector spm of conserved magnitude S, undergoing a fiee precession around

the y-axis, which 1s perniodically pertuibed (period 7) by sudden 10tations around the z-axis

over an angle piopoitional to S, Because S 15 conse1ved, Hg 15 a one-dimensional Hamiltonman

(d = 1), with a two-dimensional classical phase space consisting of the spheie of 1adius § =1

The canonically conjugated variables ale (¢, cos 8), where 8 and ¢ are spheiical coordinates
The classical hmit of the kicked top 1s given hy the map [1]

Tpt1 = 2y, COS(K2p) + ynsin(K1,),
Ynt1 = —2n SIL(K Zy) + ypn cos(K Tp ), (13)

Zn4+1 = —Tn,

m the Caitesian coordinates © = smfcosp, y = smésmep, and z = cosf Depending on
the kicking stiength K, the classical dynamics 1s 1egular, partially chaotic, o1 fully chaotic
We consider a kicking stiength K = 1 1 for which the dynamics 1s 1egular for most of phase
space We checked that ow 1esults are not sensitive to the value of K, as long as the dynamics
1emains 1egular

The quantum-mechanical time evolution after n periods 1s given by the n-th power of the

Floquet opeiator
Fy = exp [ — 1(K/25)S?] exp [ — o(n/2)5,) (14)

We pertuib the reversed-time evolution by a perlodic 1otation of constant angle aiound the
xr-axis, shghtly delayed with 1espect to the kicks in Hy,

V=98> §(t—nt—¢) (15)

The corresponding Floquet operator 15 F' = exp[—1¢9;]Fy We set 7 =1 for ease of notation,
and varied S between 250 and 1000 (hoth H and Hy conseive the spin magnitude) We
calculated the average decay M of M(t = n) = |{(¢ho|(FT)" F&|o)|? taken over 50 to 200
mutial Gaussian wavepackets ¢y of nunimal spreading (coherent states)

In fig 1 we show the decay of A for S = 1000 and different perturbation stiengths ¢ Fou
weak perturbations, the decay of A 15 exponential, and not Gaussian as one would expect
fiom first-order pertwbation theory [5] The 1cason why we do not witness a Gaussian decay
in that 1egime 15 that the peitwibation operator V' gives no first-oider coriection for low K
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Fig. 1 - Decay of M for S = 1000, K = 11, and 10°¢ = 1.5, 4.5, and 10 (thick solid lines from
right to left). The crossover from exponential to power law decay is illustrated by the dot-dashed
line x exp[—2 56 10_5t] and the dashed line « 17%/2. The dotted line gives the classical decay
o t7. Inset: decay of M for K = 11, ¢ = 107*, and S = 250, 500, and 1000 (solid lines from
right to left). The dashed and dot-dashed lines indicate the power law oc t73/? and exponential
x exp[—2 - 10_4t] decay, respectively These plots show that the ¢73/2 decay is reached either by
increasing the perturbation strength & at fixed spin magnitude S, or by increcasing S at fixed ¢.

Indeed, for K = 1.1, eigenfunctions of Fy are still almost identical to eigenfunctions of Sy,
so that diagonal matrix clements of V' o S, vanish in this basis. Because of this, the local
spectral deusity of states p(e) for weak ¢ consists of a delta-function at zero energy plus an
algebraically decaying tail [15]. In particular, the absence of first-order correction results in
the absence of smearing of the delta-function at zero energy. Consequently, the decay of the
fidelity is given by the Fourier transform of the tail of p(e) [10]. We numerically obtained a
decay p(e) x (€2 +~2/4)~! with v o< ¢! ® [16]. The resulting exponential decay o exp[—7t] of
the fidelity differs from the golden-rule decay o exp[—TI't] with I’ oc ¢2.

As ¢ increases, and looking back at fig. 1, the decay of M turns into the predicted power
law o ¢t=3/2, which prevails as soon as onc enters the golden-rule regime, we. for I/A =~
%83 > 1 [7]. One, thercfore, expects the power law decay to appear as S is increased at fixed
¢, which is indeed observed in the inset to fig. 1.

We checked that these results are not sensitive to our choice of Hamiltonian, by replacing
S, ineq. (15) with S? (this is the model used in ref. [11]) and also by studying a kicked rotator
as an alteinative model to the kicked top. These numerical results all give clear confirmation
of the power law decay (10).

It is instructive to contrast these results for the decay of the overlap of quantum wave fune-
tions with the decay of the overlap of classical phase space distributions, a “classical fidelity”
problem that has recently been investigated [9,11,13]. We assume that the two phase space
distributions pg and p are initially identical and evolve according to the Liouville equation of
motion corresponding to the classical map (13) for two different Hamiltonians Hg and H. We
consider 1egular dynamics and ask for the decay of the normalized phase space overlap,

M, (1) = / da / dppo(, p; t)o(z, ;) /N, (16)

where N, = ([ da [ dppo)*/?([ dz [ dpp)1/2.
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Fig 2 — Decay of the quantum fidelity M for S = 1000, compared to the decay of the average overlap
M. of classical phase space distributions, both for the kicked top with K = 1.1 and ¢ = 1 7 - 1074,
The initial classical distribution extends over a volume ¢ = 1072 of phase space, corresponding o
one Planck cell for § = 1000 The dotted and dashed lines give the classical and quantum power law
decays ox t71 and o t7%/?, respectively.

We have found above that a factor o< t79/2 in the decay of the quantum fidelity M(t) o
t73%/2 originates from the action phase difference and is thus of purely quantum origin. One
therefore expects a slower classical decay M(t) < C, « t~%¢. In fig. 2 we show the decay
of the averaged M. taken over 10 initial points within a narrow volume of phase space
o = sinf605p, for K = 1.1 and ¢ = 1.7-107% The decay is M, « t~!, and clearly differs
from the quantum decay o t=3/2.

The power law decay prevails for classically weak perturbations, for which the center of
mass of p and pg stay close together. (This is required by the stationary phase condition leading
to eq. (4).) Keeping o fixed, and increasing the perturbation strength ¢, the invariant tori of
Hy start to differ significantly from those of H on the resolution scale ¢, giving a threshold
Pe ~ 0. Above ¢, the distance between the center of mass of pg and p increases with time o ¢
and one expects a much faster decay M.(t) o exp[— const x¢?] for classical Gaussian phase
space distributions [13]. Quantum-mechanically, o = 1/5 (the effective Planck constant) and
the threshold translates into ¢, ~ 1/, coinciding with the upper boundary of the golden-rule
regime. As long as one stays in that regime, the perturbation will affect the phase in eq. (7),
and 1esult in the anomalous power law decay o t=3%/2

In conclusion, our investigations of the Loschmidt Echo (1) in the generic regime of classi-
cally quasi-integrable dynamics show that its decay is dominated by the power law M (¢) oc ¢~
While from purely classical considerations one expects an exponent o, = d, we semiclassically
obtain an anomalous exponent oo = 3d/2, under the assumption that the perturbation po-
tential varies sufficiently rapidly along an unperturbed classical trajectory. While this latter
assumption is gencrically satisfied (z.e. for almost any V) in the case of a chaotic Hy, it
restricts the choice of the perturbation potential V for a regular Hy. We corroborated the
anomalous power law decay by numerical simulations on a standard model of quantum chaos,
and therefore conclude that the choice of V' is not too restricted. The power law decay is to
be contrasted with the exponential decay found for chaotic systems.
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