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Mass models with Stickel potentials
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Summary. Triaxial mass models with a gravitational potential of Stickel form in
ellipsoidal coordinates are investigated. Models are constructed by specification
of the z-axis density profile y(z), choice of an ellipsoidal coordinate system,
and subsequent application of the generalized Kuzmin formula.

For each profile y(z) there is a two-parameter family of triaxial separable
models. The parameters are the positions of the two pairs of foci on the z-axis
of the ellipsoidal coordinates in which the potential is of Stickel form or,
equivalently, the central axis ratios of the density distribution. Smooth mass
models are generated by smooth profiles (z). The density, ¢, in these separable
models cannot fall off more rapidly than r~* as the radius r — ®, except on
the z-axis. All models in which o falls off less rapidly than r~* become round as
r — o, Models with a singular density in the centre only do not exist.

Specific examples are presented. Among these is a separable triaxial
generalization of the modified Hubble model [o~(1+7r%)"*?]. For a number
of cases the potential is given explicitly.

1 Introduction

Many triaxial mass models exist in which all stellar orbits enjoy three exact isolating integrals of
motion. The gravitational potential of these models is of Stickel form, so that the
Hamilton-Jacobi equation is separable in ellipsoidal coordinates. Such separable mass models
are especially valuable for a study of the dynamics of elliptical galaxies (de Zeeuw 19835a,
hereafter Paper I; see also Gerhard 1985). The orbits in them are nearly identical to the orbits
found in the numerical self-consistent models of triaxial galaxies, constructed by Schwarzschild
(1979, 1982) and by Wilkinson & James (1982). The advantage of mass models with a Stickel
potential is that the orbits — and hence the dynamics — can be described by essentially analytic
means.

Kuzmin (1956) has already studied oblate axisymmetric models of this kind. He showed that
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the density at a general point is related to the density on the symmetry axis by a simple formula.
He proved that the density is nowhere negative if it is non-negative on the symmetry axis. This
is Kuzmin’s theorem.

In Paper II (de Zeeuw 1985b) we generalized Kuzmin’s formula, and his theorem, to triaxial
mass models with a Stickel potential. This led to a new method for the construction of such
models. First one chooses a density profile and an ellipsoidal coordinate system. One integration
then produces, via the generalized Kuzmin formula, the complete mass model that has a potential
of Stickel form in the chosen coordinates. The potential can be calculated explicitly by one more,
straightforward, integration.

In the present paper we construct by this method a number of separable mass models for simple
density profiles, and show that these give rise to smooth three-dimensional mass models. Our aim
is to obtain insight into the variety of mass models that allow three exact isolating integrals of
motion for all orbits in them, and to deduce some of their general properties. A second reason for
a study of the Stackel models is that they can be used as building blocks for more general mass
models. Since the density and the potential are each determined by a function of one variable
only, the extensive tabulations that are often required for the description of general triaxial mass
models can be avoided.

It has recently come to our attention that — not surprisingly — some of the results presented in
Papers I and II had already been obtained by Kuzmin (1973). In a brief conference contribution
he presents the prototypical Stiackel model (i.e. the perfect ellipsoid of Paper I), mentions that it
supports four families of general orbits, and gives the generalization of his axisymmetric formula
for the density. As far as we are aware, he did not construct other triaxial mass models.

In Section 2 we outline our notation and summarize some basic results. General properties of
the Stackel models are studied in Section 3. In Section 4 we discuss expansions of the density and
the potential near the centre. The reader who is not interested in the mathematical preliminaries
may want to turn his attention directly to Sections 5 and 6 where we present a number of smooth
Stackel models.

2 Definitions and fundamental relations

The general Stickel potentials lead to equations of motion that are separable in ellipsoidal
coordinates (e.g. Morse & Feshbach 1953). The corresponding mass models are all triaxial. The
limiting cases of separability in oblate and prolate spheroidal coordinates lead to axisymmetric
mass models.

2.1 TRIAXIAL MODELS

Let (x, y, z) be Cartesian coordinates. We define ellipsoidal coordinates (4, #, v) as the three
roots for = of

x2 yZ 22

=, @
T+a T+ T4y

where @, f and y are constants, and —y<v=-gB<u=<-a=<A. The coordinate surfaces are
ellipsoids (4) and hyperboloids of one («) and two (v) sheets. There are two pairs of foci on the
z-axis, at z=*A; and at z=*A,, and one pair on the y-axis at y==* /A2~ AZ, with A}=y-4
and A3=y—a, so that A3—A?}=B—a. Further properties of ellipsoidal coordinates may be
found in Paper 1.
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2.1.1 Density

For mass models with a Stickel potential, the density at a point (4, ¢, v) isrelated to the density on
the z-axis by a generalized version of Kuzmin’s formula (Paper II). The z-axis is given by

A=—a, u=-p, v=z2—y, for 0<|z|=A,,

A=—a, v=-f, u=z*-y, for A;=<|z|=A,,

u=—a, v=—f,  A=z’-y, for A,=|z|. (2)
Let y(7) be the density on the z-axis (r=2z°—y; r=4, &, v). Then

o, 1, v)=giy () + gy (1) +&yy (v)

1288 (W) -¥(w)] 288 [W(u)-¥(v)] 128 (W) -] 3
T G- = wy) e
with
W(r)= f y(o)do, 4)
and
A+a)(A+p) (u+a)(u+p) (v+a)(v+p)
g=————"— =T gG=—"", (5)
A=) A=) (u=v)(u—4) (=) (v—u)

so that g; =0, g, =0, g,=0and g, +g, +g,=1. It follows immediately that a separable o(4, u, v)
is nowhere negative if, and only if, y(7)=0 for all 7=—y. This is the generalization of
Kuzmin’s theorem.

For a given density profile (z), a choice of A; and A, defines the positions of two pairs
of foci on the z-axis, and thereby fixes an ellipsoidal coordinate system, so that y(7) can be
determined. The complete mass model that has a Stickel potential in these coordinates then
follows from (3). As a result, for a given y(z) there exists a two-parameter family of separable
mass models, the parameters being Ay and A,. All these models have reflection symmetry
with respect to the three principal planes x=0, y=0 and z=0, i.e. they are triaxial.

We remark that if y(7) is n times differentiable, then so is g, except on the ellipse A =y=—a
in the (y,z)-plane and on the hyperbola y=v=-p£ in the (x,z)-plane, where ¢ is n—1
times differentiable (c¢f. Lynden-Bell 1962).

The total mass M of a model can be expressed as a single integral over y(7), and is easily
evaluated [Paper II, equation (36)].

2.1.2 Principal planes

The generalized Kuzmin formula (3) simplifies in the three principal planes. The (y, z)-plane
is given by u=—a or A=—a (Paper I). The ellipsoidal coordinates become elliptic coordinates
(x,v) with foci at z=+ A (¥=4, 1). We find

(x+p)* 2 +B)(v+p) [P(x)—W (V)] (v+p)
S0+ + 5
(x—v) (x—v)(v—2x) (x—v) (v—2x)

The (x, z)-plane is given by u=—p or v=—/f. The ellipsoidal coordinates reduce to elliptic

Ox=o(%, V)= Y. (6)
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coordinates (4, o), with foci at z=*A,(o=u, v). We obtain

A+a)? 2+a)(o+a) [¥A)-W(0)] (c+a)

(/1—0)2 7//(1)*' (,1—0)(0—,1) (/1_0) + (0_/1)2 1//(0) (7)

0)’:0(/1> 0’):

The (x, y)-plane has v=—y. In this plane (4, u) are elliptic coordinates with foci at
y=+\A3—Af{. Whereas, via (3), the z-axis density profile y(z) determines the density in the
(x, y)-plane, we may also express it in terms of the profile £(x) along the y-axis (x+8=y?,
x=A, u). We find

LB 2P x+P) =B
H= LV T S Sy, (8)
Then we may write
A+aP  20+a)u+a) [ED-Ew)] (u+a)

L —o(d, u)= A + , 9
O o Y e e ®
where we have defined

* +p)* +
()= f £ do="""D iy (r-py pi(- ) P (10)

_ (x+y (x+y)

It is evident that equations (6), (7) and (9) have the same form. The density — w(7) or &(7) —
along the axis that contains the foci of the elliptic coordinates, together with the position of the
foci, determines the density elsewhere in the plane. As a result, we may often obtain an
impression of the shape of a triaxial mass model by inspection of the density distribution in one
principal plane only. We shall see in Section 2.3 that the density in the meridional plane of an
axisymmetric model is governed by a relation similar to (6), (7) or (9).

2.1.3 Potential

The gravitational potential of a mass model defined by (3), and a given y(7), is of Stickel form
and may be written as

V=Vs=8, UA)+8, U(u)+8,U(v), (11)

where U(7) is the potential along the z-axis. For a given density profile ¥ (z) we can find U(7)
from the expression

(t+»G(D)—(y-p)G(-B)
+0 ’

where the function G(7) is given explicitly in terms of ¢(7) in equation (35) of Paper 1. G(7) is
the function that is most convenient to use in the investigation of orbits in Stickel potentials
(Paper I). Due to the fact that the Hamilton-Jacobi equation separates in these potentials the
equations of motion can be solved by a straightforward quadrature. The forcefield VVg does not
enter the calculations explicitly.

U(r)=~ (12)

2.1.4 Forces

The separable mass models are useful building blocks for more general mass models, since both
density and potential are determined by a function of one variable only. When different separable
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mass models are added, or when figure rotation is introduced, the resulting mass models will
generally have a non-integrable Hamiltonian. Accordingly, the orbits have to be found by
numerical integration of the equations of motion. This is usually done in Cartesian coordinates,
and requires knowledge of the force field. We briefly show how to calculate the Cartesian

components of VVs.

Mass models with Stickel potentials

We have
<6V 1% av> oA, u, v)(&V oV av>
ax 3y oz _a(x,y,z) A ou v/
By using the relations between (4, 4, v) and (x, y, z) given in equations (8) and (9) of Paper I
we find
( x x x )
20+a)P* 2Au+a)Q? 2(v+a)R?
I, 4, v) y y y
ox,y,2) | 24+B)P*  2u+p)Q*> 2v+PR’
z z z
\ 20+0 P 2u+y)Q® 2(v+y)R* )

where the metric coefficients P, Q and R are given in equation (10) of Paper I.
For a Stdckel potential Vs we can express aVs/dA, dVs/ou, dVs/ov explicitly in terms of
U(r) and its first derivative. We find

Ws o UD-UW] UG- UG)

p” =8 U (A)+8, i +8y PR

Vs [U(w)-U(1)] , [U(w)-UW)]
—=n— —— t&UW+tg,—,

u U—A u—v

Vs Uwv)-U Uwv)—-U
a—=g1[ ) ()]+g,,[ (v) (ﬂ)]+ng'(V), (1)
v v—4 v—u

and g;, g, and g, are given in (5).

2.2 OBLATE SPHEROIDAL COORDINATES

For y=/ we have A =0 and the ellipsoidal coordinates reduce to oblate spheroidal coordinates
(4, u, ) that have the x-axis as symmetry axis (Paper I). Let (x, Z, ) be cylindrical coordinates
with 22=y%+ 2. In each meridional plane y=constant, A and u are elliptic coordinates with
foci at x=0, |Z|=A,.

In this limit, y(7) is the density along the z-axis (2*=7+8; 7=4, ), i.e. it is the density profile
in the equatorial plane. Formula (3) (with v=—y=—f) defines an axisymmetric mass model.
The density at a general point is given by

[W(4)-W(W)] 2

o, W)=gip(A)+28,18, gy (1), (16)
with

Ata u+a 7
gl_/l—lu, glu_[u—/l. ( )
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A choice of A, defines an oblate spheroidal coordinate system. It is evident that for a given
y(Z) there exists a one-parameter family of mass models that have a potential of Stickel form
in these coordinates. All these models have the x-axis as axis of symmetry; they have reflection
symmetry with respect to the equatorial plane. We shall see in Section 4 that in many cases
these models are prolate.
The gravitational potential Vg of a mass model defined by (16) is given by
A+a)GA)—(u+a)G(u)

Vs=g: U +8, Ulu)=— p , (18)

with

272G (7 lo+a]

VIt+all_s 2(c+p)

Ur)=—G(1)=-27G¥(»)+ Y(o)do. (19)
The expression for the total mass is given in equation (41) of Paper II.

We remark that, whereas here we define a completely separable mass model by a specification
of its density profile in the equatorial plane, it is, in this special case of y=g, also possible to

define it by giving the circular velocity as function of radius in this plane. An early example was
given by Lynden-Bell (1960).

2.3 PROLATE SPHEROIDAL COORDINATES

For f=a we have A=A, and the ellipsoidal coordinates reduce to prolate spheroidal
coordinates (4, ¢, v), with the z-axis as symmetry axis (Paper I). Let (w, z, ¢) be cylindrical
coordinates with w®=x?+y% In each meridional plane ¢=constant, A and v are elliptic
coordinates with foci at w=0, z=1A,.

Upon taking y=—pf=—a, equation (3) defines an axisymmetric mass model with (given)
z-axis density profile y(7)(z>=1+y; r=A, v). The expression for the density ¢(4, v) at a general
point in terms of /(7) was first derived by Kuzmin (1956). It is

FaH-¥ml .

oA, v)=giy(A)+28:8, gy(v), (20)
with

Ata v+a 1)
gl—l—v’ gv_v—/i' .

A choice of A, defines a prolate spheroidal coordinate system. It follows that for a given
density profile (z) there exists a one-parameter family of mass models that have a potential
of Stickel form in these coordinates. All these models have the z-axis as axis of symmetry; they
have reflection symmetry with respect to the equatorial plane. We shall see in Section 4 that in
many cases these mass models are oblate.

The gravitational potential Vs of a mass model defined by (20) is given by

A+ GA)=(v+7)G¥)

VemgiU) +8,U(Y) = - @)

with

G(0)=22GW (o) 22 f 9+ (o) do. (23)
Vety oy 200+y)y?
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The total mass, M, of a model is given by
Tlot2y—a)
M=2r)| ———y(o)do=4x (z +A%)y(z)dz. (24)

It should be noted that the mass models defined by (16) and (20) - for the same y(7) —
are different. The former have the z-axis as symmetry axis, whereas the latter have the x-axis
as axis of symmetry. However, in each of the meridional planes their density distributions
are identical. As a result, many properties of the models defined by (20) can be deduced
immediately from those defined by (16) by taking # and f instead of v and y, respectively, in the
appropriate equations. The density distributions in these meridional planes are also valid for the

principal planes of the triaxial models, as is clear from a comparison with equations (6), (7)
and (9).

3 Elementary densities

In order to experiment with the use of equation (3), we consider densities on the z-axis that
are delta-functions. The resulting separable densities will be called elementary densities. Any
density profile ¥(z) may be represented as an integral over delta-functions. The complete
separable mass model that belongs to y(z), for a chosen coordinate system, then is the same
integral over the elementary densities.

3.1 ELLIPSOIDAL COORDINATES
For y(z)=06(z—zg) we have
Y(1) =219+ 7 6(r—19), (25)

where z§=1y+y. Since, by assumption, y(—z)=y(z), the density (25) corresponds to two
delta-function densities, one at z=z,, and the other at z=—2z,. The shape of the density
distribution depends on the position of the points defined by 7=7, with respect to the foci
on the z-axis, i.e. it depends on the value of A; and A,. We briefly discuss the different cases.
They are illustrated in Fig. 1.

When A,=z, the delta-function densities are beyond the outer foci on the z-axis. We write
To=A¢, and find

ok, 4, v)=2\Ao+ 7 [2gﬂ( f_"ﬂ + ) H(G~40)+ gféa-ao)], (26)

-V

where H is the Heavyside function. The elementary density (26) is zero inside the ellipsoid A =4,
infinite on it, and falls off as r~* at large radii (Fig. 1a). When zo=A,, i.e. 7y=—a, the density (26)
is infinite on the ellipse y2/(8—a) + z%/(y—a)=1in the (y, z)-plane, zero for A = — in this plane,
and non-zero outside it (Fig. 1b).

For A;=z,=A, the delta-function densities are between the inner and outer foci on the z-axis.
In this case 79=py, and

g 8
0(/1,/1,1')=2\/ﬂo+y[2ga</1 . +/1 >H(/lo—ﬂ)

—u —y

+2gv( 8,8 )H(ﬂ—uo)+g,fé(ﬂ—uo>]. 27)
A=v A-u
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Figure 1. Elementary density distributions for the triaxial case. Shading indicates a non-zero density. The three pairs
of foci are denoted by the open and filled circles and the filled squares. Further details are given in the text. (a)
Ay<zp, (b) 20=As, (¢) A1<zp<Ay, (d) zg=A4, () 0<z9<Ay, (f) 20=0.

This density is infinite on the hyperboloid of one sheet u=ug, zero for A=—a and u<y; in
the plane x=0, also zero for v=—/§ and >y, in the plane y =0, and non-zero everywhere else
(Fig. 1c). Since A~r? at large radii 7, the mass in a spherical shell with inner radius » and outer
radius r+dr decreases proportional to r~2 at large radii. For zy=A, the density is infinite
on the two branches of the hyperbola x?/(a—8)+z?/(y—f)=1 in the (x, z)-plane, zero for
v=—/ in this plane, and non-zero outside it (Fig. 1d).

When 0=zy=A; the delta-function densities on the z-axis are between the origin and the
inner foci. Now 1y=v,, and we find

pu,u,v)=2m+y[zgv(f_f—v—+ 8 )H(w—v)+g36(v—v@)]. 28)

u—v

In this case the density is finite between the two sheets of the hyperboloid v=vj, infinite on
it, and zero outside it (Fig. 1e). The mass in a spherical shell falls off as 2 at large radii. When
20=0, i.e. vp=—17, the density (28) is an infinitesimally thin disc in the (x, y)-plane (Fig. 1f). Itis
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identical to the perfect elliptic disc, discussed in detail in Paper 1. This is the only disc that has
a potential of three-dimensional Stickel form in the chosen ellipsoidal coordinate system.

The gravitational potential of the elementary densities can be calculated easily. For an
elementary density outside the outer foci [¢f. (26)] the potential is constant inside the ellipsoid
A=A49, where the density is zero.

From the properties of the elementary densities it is evident that a large variety of triaxial
mass models with Stickel potentials must exist. If the chosen w/(z) is such that the z-axis
density is relatively large between the centre and the inner foci, the corresponding mass model
has a high density close to the (x, y)-plane, and will tend to be rather flattened. In the case
where y(z) is relatively large between the inner and the outer foci, the density around the
x-axis is high, and the model will tend to be elongated in this direction. A large density on the
z-axis beyond the outer foci results in a model with most of its mass at large radii. Here the
ellipsoids of constant A are nearly round, so that the model will be nearly spherical.

At large radii, the elementary densities are either zero, or they fall off as r~* (in the sense
that the mass in a spherical shell decreases as r~2). It follows that, if y(z)=z " for large z,
then in all other directions

oA, u, v)y~r— for s<4,
~r fors=4. (29)

As a result, the separable density o(A, u, v) that corresponds to a given y(z)=0 cannot fall
off more rapidly than r~* as r — ©, except on the z-axis. Thus, mass models with a Stickel
potential in which y(z) decreases faster than z* as z — ® are somewhat artificial.

We remark that density distributions with a Stackel potential in which y(z) — «© for z —0
must have ¢ — © in the whole (x, y)-plane. Models with a Stickel potential in ellipsoidal
coordinates and a singular density in the centre only do not exist.

3.2 PROLATE SPHEROIDAL COORDINATES

In the limit f=a the expressions for the elementary densities derived in Section 3.1 become
somewhat simpler. When A,=z,; we have 75=4; and Kuzmin’s formula (20) gives

285 8v 5
o, v)=2Ao+y P H(A—=A0)+816(A—4) |. (30)

4

This elementary density is illustrated in Fig. 2(a). The density is zero inside the prolate spheroid
A=2A¢. On the spheroid it is infinite, and it falls off as r™* at large distances from the centre.
When 0=z4=A,, we have 5=, and find

Q(/l,V)=2\/V0+j/[%%H(VO—V)+g3(5(V—VO)j|. (31)
—v

This density is finite between the two sheets of the hyperboloid of revolution v=1, infinite
on the hyperboloid, and zero outside it (Fig. 2b). At large radii the density falls off as r—*. For
2o=0 it reduces to an infinitesimally thin disc in the (x, y)-plane, which is identical to
Kuzmin’s disc (Kuzmin 1953; Paper I). When z,=A, the delta-function densities are at the
two foci. In this case the elementary density is everywhere non-zero and is infinite only at
the foci.

The gravitational potential of two point masses is separable in prolate spheroidal coordinates
that have their foci at the positions of the point masses. This was demonstrated by Jacobi (1839;
1866) in his re-derivation of Euler’s (1760) solution of the famous problem of motion in the
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Figure 2. Elementary density distributions. Densities are indicated by the grey scale. Contour values are
logarithmically spaced, with intervals of log 1.62. The thick black curve is the bounding coordinate line (r=1r,) where
the density is a delta-function. The black square indicates the position of the focus, at z=A,;, (a) A<z, (b) A,> 2.

potential of two fixed point masses. This case was not recovered in the above analysis, because the
elementary densities (30) and (31) are defined by means of Kuzmin’s formula which has been
derived for potentials of the form (22) with G(7) continuous at 7=—a. The potential of two point
masses, M, in the foci is indeed of the form (22), but with G(A)=2GM/\JA and G(v)=0, so that in
this case G(7) is not a continuous function of 7, and Kuzmin’s formula does not apply.

From the properties of the elementary densities it follows (cf. Section 3.1) that mass models
with a large density on the z-axis between the centre and the foci will tend to be rather flattened
(i.e. oblate). If y(z) is relatively large outside the foci, the corresponding models will be nearly
spherical. The behaviour of o(4, v) at large radii is identical to that given in (29) for the general
case.

3.3 OBLATE SPHEROIDAL COORDINATES

In this case elementary densities are defined as the separable densities that belong to
y(2)=06(Z—Z,) with 7o+=2§. Expressions for ¢(4, ¢) are similar to equations (30) and (31).
The cross-sections of the densities with the meridional plane are identical to those illustrated
in Fig. 2, if we read (y, %) instead of (w, 2).

For a relatively large density (Z) inside the circle Z=\/ﬂ——_a in the equatorial plane, the
corresponding separable mass model has most of its density close to the x-axis, and will tend to be
elongated (i.e. prolate). When y(Z) is relatively large outside this circle the model will be nearly
round. The behaviour of (4, ) at large radii is identical to that given in (29) for the triaxial case.

4 Expansions near the centre
4.1 DENSITY

If both y(—y) and y'(—y) are finite, we can expand the density (3) around the centre in powers
of x2, y2 and z?, i.e.

x2 2 22
o0, 2, 22)=Qo{1“ —2—y—2——2—...}, (32)

ay 4a; a3
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where we have omitted terms of order four and higher. Thus, very close to the centre, the
surfaces of constant density are approximately ellipsoidal. We now relate the values of the
semi-axes a;, a and a; to the density profile y(z).

Close to the origin, which is at (4, u, v)=(—a, —f, —y), we have

A=—a+x®+ ..., u==p+y*+ ..., v=—y+22+ ... (33)

By expansion of y/(7) and use of (3) we find

2

(y—ay

002 y2, ) =p(—p)+ f W@ -p(-p)do

2y?
(r=p
Thus, the density very close to the centre is determined by the complete z-axis density profile
between the centre and the foci, in agreement with the properties of the elementary densities

discussed in Section 3.1. The axis ratios of the ellipsoidal surfaces of constant density near the
centre follow from

—+

—p
| w@-weidory nae (34

“__2 Y Y
—= X o0)—y(—y)ldo,
& ay wpl, VTV

a3 2 1 -

—= X o)—y(—y)]do. 35
o o) v (35)
This shows explicitly that for a fixed function (z) the values of A,=\y—a and A;=\y—p
determine the values of as/a; and as/a,, respectively.

When = a the ellipsoidal coordinates reduce to prolate spheroidal coordinates, and we obtain
a,=ay, in agreement with the fact that in this case the separable mass models have the z-axis as
axis of symmetry. In case y=/3, the mass models have a potential of Stickel form in oblate
spheroidal coordinates, and a,=as.

In the limit y=/£=a we obtain a;=a,=a,. Thus, as the coordinate system becomes spherical,
the equidensity surfaces near the centre are spheres, irrespective of the form of y(z). This is as it
should be, since the only potentials separable in spherical coordinates that give rise to
non-singular densities are themselves spherical. As a result, when y=£=a the whole mass model
is spherical.

The surfaces of constant 4 are triaxial ellipsoids with the short axis in the x-direction, and the
long axis in the z-direction (@< <y). Eddington (1915) conjectured that the surfaces of constant
density in a mass model with a Stickel potential would always be elongated most in the
x-direction, and least in the z-direction, so that a;>a,>a3. In particular, this would mean that
mass models with a potential of Stickel form in prolate spheroidal coordinate would always be
oblate, and vice versa. It follows from (35), however, that this is not true. It is not difficult to find
functions y/(7) such that @, a, and a5 do not satisfy the inequality a;>a,>a;. We shall give an
example in Section 6. However, if both ¢(7) and | ¢’ (7) | are monotonically decreasing functions
of T for —y=t=-—a, then a;>a,>a;.

4.2 POTENTIAL
The potential Vg can be expanded around the centre as

Vs=Vot+Vix24+V,y2+ Vaz2 4 Vi x 42V x 2y 2 42V x 2 22+ Vo y4 42 Vosy 222+ Vs 24+ ... (36)
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By expansion of G(r) around —a, —f and —y, and use of (33), we obtain

Ul(—a)-U(- -pB)—-U(—-
Vel eIy, TEPTIED ey )
y—a y=F
Explicit expressions for the special values of U(7) and U’(7) in terms of y(7) can be found
by means of the equations given in Paper II, and relation (12). The coefficients of the higher
order terms can be derived in the same way. They are most conveniently expressed in terms
of the lower order coefficients. We find

y,=2 17V A Of O (38)
(B-a) (r—a) (r=5H
and
3V11+V12+V13=4”G[‘P(—a)~(7—a)w(—y)]’
(y—a)
Vgt 3Vt Vs =42 G [‘P(—/J’)"(V—ﬁW(—V)]’
(y—B)°
Viz+t Vs +3Vy3=22Gy'(—y). (39)

The expressions (39) follow also by application of Laplace’s operator to the expansion (36)
and comparison of the result with 47G times the expansion (34) for the density. Poisson’s
equation furthermore gives

Vi+Vo+V3=272Go,. (40)

In the limit f=a we find V =V,, V|;=V,=1V,, Vi3=Vas, ..., as expected. With the
help of equation (23) we obtain for this case

f 1) [9(~7)— (o) do
3 -y

— =1+3 — : (41)
J h(o)y(o)do

4

where the function /(o) is given in equation (A16) of Paper II, and we have used the relation

—-a
J’ h(o)do=—2(y—a)*?.
-y
For —y=7=-a we have h(r)=<0, so that V;/V;=1, i.e. the equipotential surfaces near the
centre are oblate spheroids, if ¢(r)<y(—y) for all 7=-a. This is true even if | ' (7)] is not
a decreasing function of 7, so that near the centre the surfaces of constant density are prolate
(cf. Section 4.1). We conclude that for all centrally concentrated mass models for which the
equations of motion separate in prolate spheroidal coordinate the potential is oblate.

In the limit y=/4 we have V,=V;, Vy=V33=14V,,, Vi,=Vi3, etc. We now find

; f RO WP -p(o)] do
i , (42)
' f (o) y(0) do

-8

Vs
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where in this case /(o) is given in equation (A14) of Paper II, and

j h(o)do= l(/)’— a)*/?.
_ﬁ 3

Aslong as y(— )=y (z) for —f=1=—a (so that the density in the equatorial plane between the
centre and the focal circle Z= A, is decreasing) we have V,/V,=1, so that near the centre the
equipotential surfaces are prolate spheroids. It follows that for all centrally concentrated mass
models for which the equations of motion separate in oblate spheroidal coordinates, the potential is
prolate.

In a similar way we can calculate V3/V; and V3/V, for the triaxial models. The resulting
expressions are lengthy combinations of complete elliptic integrals of the first and second kinds.
We conjecture that V3>V,>V, for all centrally concentrated mass models with a Stickel
potential, so that the potential is elongated most along the x-axis and least along the z-axis, just as
the density. By contrast, the surfaces of contant 1 are elongated least along the x-axis, and most
along the z-axis.

5 A specific family of models
5.1 DEFINITION

We now consider the separable mass models that belong to a simple set of smooth z-axis density
profiles, for which the required integrations can be carried out mainly by analytic means. We take

S

OoC

VO

(43)
for various values of s>0 (c is a constant). The central density is gy. At large distances from the
centre y(z) decreases to zero proportional to z~*. For s=35 the profile (43) is that of a Plummer
(1911) model. For s=3 the function (43) is the (modified) Hubble profile, with core radius, c.
Radial profiles like this are often used to model elliptical galaxies (e.g. Schwarzschild 1979). A
spherical model with s=2 has a logarithmic potential and hence has a rotation curve that is
asymptotically flat at large radii.

5.2 DENSITY

On the z-axis we have z2=7+y(r=A4, u, v). Without loss of generality we choose y=—c? so that
(43) becomes

0o¢’
v@O="z (44)

Its primitive function [cf. (4)] is:

2@0C2 Cs—2
Y(r) = o [z_(s—Z)/z_l]’ SF2,
=g0oc*(Int—1Inc?), s=2. (45)

For each choice of ellipsoidal coordinates (4, ¢, v) the generalized Kuzmin formula (3) now
determines a complete mass model. It follows from (44) that y(7) and | %' (7) | are monotonically
decreasing functions of 7 for all 7= —y. As a result, for all positive values of A; and A, we find a
triaxial mass model with surfaces of constant density that are all elongated most in the x-direction
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and least in the z-direction, a short-axis density profile (43), and a gravitational potential of
Stackel form. This is true for all values of s>0.

The axis ratios as/a; and as/a, of the surfaces of constant density near the centre can be
calculated by means of (35). We find

612 4 2
———z—=————q—22(2qs—sq2+s—2), SF2,
ai  s(s—2)(g"-1)
) 2 4 2
_2q (1_ q 1nq>, s=2, (46)
1- g2 1-¢°
where we have written
y c
=g\ 47
1 \/a JZ+A3
T T T T T T
10 - 10 _
Y Z
(@) )1 w
10 - 10 L _
1 1 1 1 1 1
-10 0 X 10 -10 0 X 10
T T T
10 F 4
4
‘10 + -
1 1 1
10 0 10
Y

Figure 3. Contours of constant density in the principal planes of the triaxial model with the modified Hubble profile,
defined by equations (44) and (45) with s=3, c=1 and central axis ratios a,:a,:a;=1:0.625:0.5. Contour values are
spaced logarithmically, with intervals of log3.

Ge™

— ! n
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The expression for as/a, is identical if we replace ¢ by g/p= \/W=c/ JcZ+A7 (so that
p= J,B/T). We remark that, for fixed c, as/a; and a3/a, may take all values between 0 and 1, by
proper choice of A; and A,.

The case s=4 deserves special attention. We find from (46) that as/a;=q and a,/a,=p.
Equation (3) gives

Q, 2 X z
ﬂ)/) & m2=—+y—+— (48)

A’ ,V= < = b bl
0@, u, v)=go Ltm?) 2tata

Auv

and y=—c?=—a3, B=—a3, a=—a}. Thus, the surfaces of constant density are all similar,

concentric ellipsoids. This model is the perfect ellipsoid, described in detail in Paper I.

In Fig. 3 we show contours of constant density in the three principal planes of the model with
s=3 and central axis ratios a;:a,:a;=1:%8:2. The surfaces of constant density evidently are
smooth, and nearly ellipsoidal. They become spherical as r=x*+ y7+ z* — o This case may be
compared with Schwarzschild’s (1979) triaxial density distribution which is the basis for his

o
T
A
o
T
1

-10 0 10 -10 0 10

€l
€l

10 k- - 10 N

| 1 { 1 1 1

-10 0 P 10 -10 0 10

W w
Figure 4. Contours of constant density in the meridional plane of models defined by equations (44) and (45) with

§=2,3,4and 5, c=1, and central axis ratio equal to 0.5. Contour values are spaced logarithmically, with intervals of
log 3.
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numerical construction of a self-consistent galaxy. He used a non-separable potential such that
the corresponding radial density profile is ~(1+7?)~*2, and required that the axis ratios of the
density are 1:38:%5 at small and large radii. At intermediate distances they differ by amounts
of up to 15 per cent from these values (cf. de Zeeuw & Merritt 1983).

Fig. 4 shows contours of constant density in the meridional plane (w, z) of the oblate (f=a)
models with s=2, 3, 4 and 5, and a central axis ratio of 0.5. In Fig. 5 the ellipticity, ¢, of the
contours of constant density is given as function of logarithmic distance along the z-axis for a
number of models. The ellipticity is defined as 1 minus the ratio of short over long axis. As we
have seen in Section 2, these figures apply equally well to the density distribution in any of three
principal planes of the triaxial mass models with s=2, 3, 4 and 5. This can be seen explicitly by a
comparison of Fig. 3 with Fig. 4(b).

The perfect ellipsoid is the only triaxial mass model with a Stickel potential that is stratified
exactly on similar concentric ellipsoids (de Zeeuw & Lynden-Bell 1985). For s#4 the surfaces of
constant density are therefore not all similar ellipsoids. This can be clearly seen in Figs 3 and 4.

1'0 T Ll T 10 ] T ]
$=2 S=3
08 - 08 =
() €
06 . 06 -
0.4 1 04 -
v \\ | ) X
0.0 L 00 L —1L
& 0 1 2 3 4 0 1 2 3
log z log z
1.0 . ; . 10 T T T
° 5
08 | 45 ] 08
€ £
06 / . 06 .
4
04 F . 04 -
02 } 35 02 i
S=4 S=5
2 3
00 L 1 0.0 a 1 1
-1 0 1 2 3 -1 0 1 2 3
log z log z

Figure 5. Ellipticity of the surfaces of constant density as function of logarithmic distance along the z-axis, for models
defined by (44) and (45).
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For the s=3 models with moderate central axis ratios — the models most relevant for elliptical
galaxies — the deviations from exact ellipsoids are only of the order of a few per cent.

Models with s<<4 become spherical in the limit r — . The transition occurs more rapidly for
decreasing values of s (cf. Fig. 5). For s>4 the density falls off as » ~*in all directions, except along
the z-axis. As a result, these models have equidensity surfaces that depart strongly from the
nearly ellipsoidal form, with ‘holes’ along the z-axis, and are rather artificial. This isin agreement
with our results of Section 3.

5.3 POTENTIAL

The gravitational potential of the mass models is given in equations (11) and (12), where we have
to calculate G(7) by means of equation (35) of Paper II, and use the expression (45) for ¥(7). For
integer values of s, G(7) can be expressed in terms of the incomplete elliptic integrals of the three
kinds. The case s=4 is given explicitly in Appendix B of Paper I. In practice the required
quadrature is most easily carried out by numerical means.

In the limit #=¢ all models are oblate, and the gravitational potential is given by (22) and (23).
For integer values of s the function G(7) is now elementary. Some cases of interest are

s=2: G(z’)=—4f£Ggoy[ln <z>—mln(—z~>
Y 2(z+y) —Y

(2y—a)< 1 \/r-f—y 1 \/y—a)}
+ arctan \|——— arctan \/—— | |,
=y \Jr+y -y y-a —y

47 Gooy =7y [m VrHtty  (r-a) (ﬁ—v’fy]

vy = Ty

NTY Y NT+Y
4
s=5: G(n)= EJZ'GQO\/?}/

5s=3: G(r)=-

[(y—2a)1—a\-y]
V(=7 +\7)
with, as usual, y=—c?. For s=4, see equation (27) of Paper I. We remark that for s=2 the
potential diverges logarithmically at large radii. Instead of choosing Vg — 0 as A — « [as is done
in equation (23)], we have taken G(—a)=0 so that V=0 at the origin. For s=3 the total mass

diverges logarithmically, but the potential is bounded.

In the limit y=/ all models are prolate, and the gravitational potential is given in (18) and (19).
For integer values of s the function G(7) is again elementary. The case s =4 is the perfect prolate
spheroid; its potential is given in equation (25) of Paper I. For s=3 we find

(49)

47G — Ata A+a
G(/l)=——p()[j[\//3’—a arctan \/——++—fF Arth /——
N pf—a A
— —Bl+a)
— Jf—aarctan /| —— |,
(f—a)i
4rG — uta lutal
G(u)=- —/—Q(ﬁ[\/ﬂ—a Arth rre ++/—f arctan \/ﬂ |
Viutal p-a u

— plu+a)
Y- Iy 7
VvB—a Arth 4/ ( —a)u} (50)

An equivalent expression for G(7) has been given by Gerhard & Binney (1985).
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6 Other examples

In order to illustrate that the class of mass models with separable potentials is rich, we briefly
consider some other simple density profiles. We restrict ourselves to models separable in prolate
spheroidal coordinates. From the preceding sections it is evident that these axisymmetric models
all have triaxial counterparts with very similar properties.

6.1 MODIFIED JAFFE MODELS

First we consider a z-axis density profile ¥(z) given by

9002

0<c’<l. (51)
For c=1 this is the profile of the perfect oblate spheroid, which we already discussed in Section 5.
In the limit ¢ — 0, where goc? is kept constant, the function (51) resembles the density profile
proposed by Jaffe (1983) for elliptical galaxies. In this case ¥/(z)~z 2 for z<1, and ¢(z)~z *at

N
T T T T LIk T

a) b)

-10 0 10 -10 0 10

€l
€l

C)
10 | 4

1 1 Il

-10 0 ~ 10
w

Figure 6. Contours of constant density in the meridional plane of models defined by (51) and (52). Contour values are
spaced logarithmically, with intervals of log9. (a) A,=0.25, ¢=0.05, (b) A,=0.5, ¢=0.05, (c) A,=0.25, ¢=0.01.
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large distances from the centre. We take ¢>0 in order to avoid infinite densities in the whole
equatorial plane. Nevertheless, for very small ¢ most of the density is close to this plane. As a
result, for c<<A, the mass models are strongly flattened.

In this case we have (with y=—c?)

T W)= nr—tn(r+y+1)=In(=y)]. (52)
(t+y+1) y+1

y()=

Both 9(7) and | ¢'(7) | are monotonically decreasing for 7=—y. All models are oblate.
The function G(7) that via (22) defines the gravitational potential is elementary (for f=a):

2xGogy [ (t+2y—a)

G(n)=— (In(z+y+1)=Inr+In(—y)]-In(-y)
y+1 l (r+y)
(4y—2a) +y 2(y—-a-1) —
+—————arctan - ————arctan y7+y ;. (53)
V=YNTHY -y VT+Y

The total mass, M, of the model is given by [c¢f. equation (24)],

27 2y—a
B )’Qo< Y +1+a_}/)' (54)
y+1 V—y

It can be verified that in the limit ¢ T 1 we indeed recover the results for the perfect oblate
spheroid obtained in Paper I. Fig. 6 illustrates three different models.

6.2 A SIMPLE POTENTIAL

A spherical model that has been used often is the isochrone, for which many relevant quantities
can be calculated explicitly by analytic means (Hénon 1959a, b, 1960; Eggen, Lynden-Bell &
Sandage 1962; Mulder 1983; Binney & Petrou 1985). The spherical density distribution o(r) is
given by

40,c* (c+2\/r§+c2)
3(r2-i-c2)3/2 (c+ JrP+ch?’

where c is an arbitrary constant and g is the central density. At large radii o(r) falls off as
r~* We take (55) as the z-axis density profile, with again y=—c?, so that

7//(T)=400y2 (\/—_}/+2\ﬁ)’
3077 (J=y+ )

Y(r)= §poc3<—1——l—+—L—). (56)
3 V=r+ir \r 2y-y

For the function G(r) we find by means of (22)

o(r) (55)

16 7Goy\/— —y(y—a
Gy _e@_[ma_w]_ (57
9 V-y+ir 2(J=r+0)
The total mass, M, of the model is
16
M=— ;ﬂpoJ—_y(yHa), (58)
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Figure 7. Ellipticity of the surfaces of constant density as function of logarithmic distance along the z-axis, for models
corresponding to the simple potential (57), and c=1.

which is positive since y+2a is negative. The surfaces of constant density turn out to be nearly
spheroidal, with slowly varying axis ratios (Fig. 7). The central axis ratio is given by

a3 2¢°3+9q+4°)
ai  5(1+q)’

where g was defined in (47). Many other separable .generalizations of the isochrone can be
constructed, both axisymmetric and triaxial. An axisymmetric example with a particularly
simple potential [i.e. with a function G(7) even simpler than (57)] is given by Kuzmin (1956), and

further discussed by Kuzmin & Kutuzov (1962). We shall investigate its triaxial generalizationin a
future paper.

(59)

08 r E

04 | B

02 4

00 ' s i
2 4 0 1 2

1 | I

-10 0 — 10
o log z
Figure 8. (a) Contours of constant density in the meridional plane of the model defined by (60) and (61), A,= \@,
and y=—1. Contour values are spaced logarithmically, with intervals of log1.5. (b) Ellipticity of the surfaces of
constant density as function of logarithmic distance along the z-axis of the same model. The ellipticity is defined as 1
minus the ratio of short axis over long axis. At z=0.59 the long and short axes exchange roles.
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6.3 PROLATE/OBLATE MODELS

Another density profile is

Qo
= ) 60
Y(z) T+ (60)
We find
Y(z)= __ G , W(7)=gq arctan (7+7y), ' (61)
1+ (z+y)?

so that y'(—y)=0. From equation (35) it follows that for all choices of prolate spheroidal
coordinates — for all values of A,>0 — the axis ratio a;/a, of the surfaces of constant density is
infinite in the centre. Thus, close to the centre, these surfaces are prolate. With increasing
radius the surfaces of constant density become quickly oblate, however (Fig. 8a). At large
distances from the centre the density falls off as r~*, and the axis ratio approaches a constant value
(Fig. 8b), which is given by

o —
ar). 1+x(-g)+(1-g?
The function G(7) for this case is (for f=a)
—a—1 T+y+y 2(r+y)+1] &
G(Z)=2]Z'GQO{ (77_._*) In [ }/ : v 24y ]+—
V2(T+y) Wi+ (zr+y)? 2
(y—a+1) 1-(z+y) (t+2y—a)
T aree0s ———=—s— arctan (7+y) ¢, (63)
V2(z+y) Vi+(z+y) (z+y)
and the total mass equals
M= \2(y-a+1) 7%g,. (64)

7 Concluding remarks

[t is evident that many smooth triaxial mass models with a Stackel potential can be constructed by
means of the generalized Kuzmin formula. We have obtained such models for a number of simple
radial-density profiles. The models have a large variety of three-dimensional shapes.

Elliptical galaxies are unlikely to have gravitational potentials that are exactiy of Stickel form.
We have not addressed the question as to how accurately one can represent these galaxies with
separable mass models. From the examples presented here it follows, however, that spherical
mass models that are often used to represent elliptical galaxies can be extended easily to triaxial
mass models in which the equations of motion are separable. This makes it possible to investigate
the dynamics of these triaxial stellar systems by essentially analytic means.
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