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We calculate the probability distribution of the matrix Q = —1AS '4S/6E for a chaotic system
with scattering matrix S at energy E  The eigenvalues 7, of @ are the so-called proper delay
times, mtroduced by Wigner and Smuith to describe the time dependence of a scattering process The
distribution of the nverse delay times turns out to be given by the Laguerre ensemble from random

matrtx theory [S0031-9007(97)03411-X]
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Eisenbud [1] and Wigner [2] introduced the notion of
time delay 1in a quantum mechanical scattering problem
Wigner’s one-dimensional analysis was generalized to an
N X N scattering matrix S by Smith [3], who studied
the Hermitian energy derivative @ = —1/4S~ 195 /0E and
mterpreted 1ts diagonal elements as the delay time for a
wave packet incident 1n one of the N scattering channels
The matrix @ 1s called the Wigner-Smith time-delay
matrix and 1its eigenvalues 71, 7, , Ty are called proper
delay times

Recently, interest 1n the time-delay problem was revived
1n the context of chaotic scattering [4] There 1s consider-
able theoretical [4—7] and experimental [§—10] evidence
that an ensemble of chaotic bilhards containing a small
opening (through which N modes can propagate at energy
E) has a umiform distribution of § 1n the group of N X N
unitary matrices—restricted only by fundamental symme-
tries This universal distribution 1s the circular ensemble
of random-matrix theory [11], introduced by Dyson for 1ts
mathematical simplicity [12] The eigenvalues e'¢ of S
in the circular ensemble are distributed according to

con) = [le® —e? 1P, ()

n<m

P(¢1, ¢,

with the Dyson mdex B =1, 2, 4 depending on the
presence or absence of time-reversal and spin-rotation
symmetry

No formula of such generality 1s known for the time-
delay matrnix, although many authors have worked on this
problem [6,13-23] An early result, {tr Q) = 7y, 15 due to
Lyuboshuts [13], who equated the ensemble average of the
sum of the delay times tr Q0 = Zﬁ;l T, to the Heisenberg
time 7y = 27A/A (with A the mean level spacing of
the closed system) The second moment of trQ was
computed by Lehmann et al [18] and by Fyodorov and
Sommers [19] The distribution of Q 1tself 1s not known,
except for N =1 [19,21] The trace of Q determines
the density of states [24], and 1s therefore sufficient for
most thermodynamic applications [21] For applications
to quantum transport, however, the distribution of all
individual eigenvalues 7, of Q is needed, as well as the
distribution of the eigenvectors [25]

0031-9007/97/78(25)/4737(4)$10 00

The solution of this 40 year old problem 1s presented
here We have found that the eigenvalues of Q are inde-
pendent of § [26] The distribution of the inverse delay
times vy, = 1/7, turns out to be the Laguerre ensemble
of random-matrix theory,

N/2 _
) & [Tl = v B[] v e Broml2,

1<y k
)

but with an unusual N-dependent exponent (The function
P 1s zero if any one of the 7,,’s 1s negative ) The corre-
lation functions of the 7,’s consist of series over (gen-
eralized) Laguerre polynomials [27], hence the name
“Laguerre ensemble” The eigenvectors of Q are not
mdependent of S, unless 8 = 2 (which 1s the case of
broken time-reversal symmetry) However, for any S the
correlations can be transformed away 1f we replace Q by
the symmetrized matrix

P(y1,

—1/2 08 __
Qp = —uhS™'2—= 5712, (3)

which has the same eigenvalues as @  The matrix
of eigenvectors U which diagonalizes Qp = U X
diag(r;, ,7y)U' 1s independent of § and the 7,’s,
and uniformly distributed 1n the orthogonal, unitary, or
symplectic group (for 8 = 1, 2, or 4, respectively) The
distribution (2) confirms the conjecture by Fyodorov and
Sommers [19] that the distribution of tr Q has an algebraic
tail o« (tr Q)27 AN/2

Although the time-delay matrix was interpreted by
Smith as a representation of the “time operator,” this
interpretation 18 ambiguous [19] The ambiguity arises
because a wave packet has no well-defined energy There
15 no ambiguity 1 the application of Q to transport
problems where the mmcoming wave can be regarded
monochromatic, like the low-frequency response of a
chaotic cavity [21,22,28] or the Fermi-energy dependence
of the conductance [25] In the first problem, time delay
1s described by complex reflection (or transmission)
coefficients R,,,{(w),

Run(@) = Run(O)[1 + 10Tpn + O(w?)], (4a)
Rpn(©) = ISal>,  7pn = ImAS18S,,/0E  (4b)
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The delay time 7,,, determines the phase shift of the ac
signal and goes back to Eisenbud [1]. With respect to a
suitably chosen basis, we may require that both the matri-
ces R,,»(0) and 7,,, are diagonal. Then we have

Run(@) = 8unll + iwTy + O(0?)], 5)

where the 7,, (m = 1,...,N) are the proper delay times
(eigenvalues of the Wigner-Smith time-delay matrix Q).
For electronic systems, the @ (w) term of R, (w) is the
capacitance. Hence, in this context, the proper delay
times have the physical interpretation of “capacitance
eigenvalues” [29].

We now describe the derivation of our results. We
start with some general considerations about the invari-
ance properties of the ensemble of energy-dependent scat-
tering matrices S(E), following Wigner [30], and Gopar,
Mello, and Biittiker [21]. The N X N matrix S is uni-
tary for 8 = 2 (broken time-reversal symmetry), unitary
symmetric for 8 = 1 (unbroken time-reversal and spin-
rotation symmetry), and unitary self-dual for 5 = 4 (un-
broken time-reversal and broken spin-rotation symmetry).
The distribution functional P[S(E)] of a chaotic system is
assumed to be invariant under a transformation

S(E) — VS(E)V', 6)

where V and V' are arbitrary unitary matrices which do
not depend on E (V/ = VT for g =1, V' = VR for
B = 4, where T denotes the transpose and R the dual of
a matrix). This invariance property is manifest in the
random-matrix model for the E dependence of the scatter-
ing matrix given in Ref. [22]. A microscopic justification
starting from the Hamiltonian approach to chaotic scatter-
ing [31] is given in Ref. [32]. Equation (6) implies with
V =V =is"1/2 that

P(S,Qp) = P(—1,0p). )

Here P(S,Qf) is the joint distribution of § and Qp,
defined with respect to the standard (flat) measure dQpg
for the Hermitian matrix Jf and the invariant measure d.S
for the unitary matrix S. From Eq. (7) we conclude that
S and Qp are statistically uncorrelated; their distribution
is completely determined by its form at the special point

the M X M Hamiltonian matrix HH of the closed chaotic
cavity [6],

| — ik AM i AT
. F—

S = , -
1 + ik E,

8)

Kmn -
m a

The Hermitian matrix JH is taken from the Gaussian or-
thogonal (unitary, symplectic) ensemble [11], P(H ) =
exp(—Bm2tr H2/4A’M). This implies that the eigen-
vector elements ,, are Gaussian distributed real (com-
plex, quaternion) numbers for 8 =1 (2, 4), with zero
mean and with variance M ™!, and that the eigenvalues
E, have distribution

[T1E. — EJP]]epmEla M (9)
o

mw<r

P({Eq}) =

The limit M — o is taken at the end of the calculation.

The probability P(—1, Q) is found by inspection of
Eq. (8) near § = —1. The case § = —1 is special,
because S equals —1 only if the energy E is an (at
least) N-fold degenerate eigenvalue of J{. For matrices
S in a small neighborhood of —1, we may restrict the
summation in Eq. (8) to those N energy levels E,, «

., N, that are (almost) degenerate with E (i.e., |E —
E,| < A). The remaining M — N eigenvalues of H
do not contribute to the scattering matrix. This enormous
reduction of the number of energy levels involved provides
the simplification that allows us to compute the complete
distribution of the matrix Qg.

We arrange the eigenvector elements ¢, into an
N X N matrix ¥,, = i, M'/2. Tts distribution P(¥) o
exp(— B tr ¥ /2) is invariant under a transformation
¥ — PO, where O is an orthogonal (unitary, symplec-
tic) matrix. We use this freedom to replace ¥ by the
product WO, and choose a uniform distribution for O.
We finally define the N X N Hermitian matrix H,,

o1 Oa(Ee — E)O; «- Since the distribution of the en-
ergy levels E, close to E is given by l_[#<,, E, — E,|P
[cf. Eq. (9)], it follows that the matrix H has a uniform
distribution near H = (0. We then find

S =—1. S=—1+ (irg/R)YT1HY (10a)
The d.istributior.l of § and Qp at S = —1 .is com- Op = Ty ¥t 1w, (10b)
puted using established methods of random-matrix theory
[11,31]. The N X N scattering matrix S is expressed in Hence the joint distribution of S and Qp at § = —1 is
terms of the eigenvalues £, and the eigenfunctions i, of | given by
P(—1,QF) = j AV dH e AUYY' 2591w Ns5(Qp — 70T 101,
= f AW e FUVY2(qor Y BN+2-BY 250 — 7 p pt=Tp=ly (11)

The remaining integral depends entirely on the positive-definite Hermitian matrix I' = W', In Refs. [27] and [33]

it is shown that

f AV F(rvh) = f dT(det TYE=22,(TyO(T), (12)
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where @ (') = 1 1f all eigenvalues ot I' are positive and
0 otherwise, and f 1s an arbitrary function of I' = Pt
Integration of Eq (11) with the help of Eq (12) finally
yields the distribution (2) for the inverse delay times and
the uniform distribution of the eigenvectors, as advertised

In addition to the energy derivative of the scattering
matrix, one may also consider the derivative with respect
to an external parameter X, such as the shape of the
system, or the magnetic field [19,20] In random-matrix
theory, the parameter dependence of energy levels and
wave functions 1s described through a parameter depen-
dent M X M Hermitian matrix ensemble,

HX)=H + M 2x 3, (13)

where H and ' are taken from the same Gaussian en-
semble We characterize 5/9X through the symmetrized
derivative

as

- _ S—1/2 _5—1/2, 14
Ox L 3 (14)
by analogy with the symmetrized time-delay matrix Qg 1n
Eq (3) To calculate the distribution of Oy, we assume
that the invariance (6) also holds for the X-dependent
ensemble of scattering matrices (A random-matrix model
with this invariance property 1s given in Ref [34]) Then
1t 1s sufficient to consider the special pomnt § = —1

From Eqgs (10b) and (13) we find
Ox = ¥ 1gy-1 P(H") « exp(—Btr H?/16),
(15

where H,,, = —(rg /M™Y. ; g H o, A calcu-
lation similar to that of the distribution of the time-delay
matrix shows that the distribution of Qy 1s a Gaussian,
with a width set by Qp,

P(S,Qf, Qx) = (det QE)—ZBN—3+3,B/2

1

X exp[———’g—tr(THQb?l + N

X (ngle)zﬂ (16)

The fact that delay times set the scale for the sensitivity
to an external perturbation in an open system 1s well
understood 1n terms of classical trajectories [35], 1n
the semiclassical limit N — o Equation (16) makes
this precise 1n the fully quantum-mechanical regime of
a finite number of channels N Correlations between
parameter dependence and delay time were also obtained
mn Refs [19,20], for the phase shuft derivatives d¢,/9X
In summary, we have calculated the distribution of
the Wigner-Smith time-delay matrix for the chaotic
scattering  Thus 1s relevant for experiments on frequency
and parameter-dependent transmission through chaotic
microwave cavities [9,10] or semiconductor quantum dots
with ballistic pomnt contacts [36] The distribution (1)

has been known since Dyson’s 1962 paper as the circular
ensemble [12] It 1s remarkable that the Laguerre
ensemble (2) for the (inverse) delay times was not
discovered earlier
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