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INTRODUCTION

by

H.W. LENSTRA, JR.

This introductory lecture is devoted to a specific problem from compu-
tational number theory. The discussion will provide us with an opportunity
to indicate which type of questions will be considered in the other lectures.

A classical theorem due to Fermat asserts that for every prime number
p with p = Imod 4 there exist integers x and y, unique up to order and sign,

such that

2 2
PpP=X +y.

For example, the prime factor p = 1238926361552897 of 228-+1 discovered by
BRENT and POLLARD [2] can be written as

p = 255153042 + 242465592,

How were these values determined? More generally, given p, how does one
determine x and y in the most efficient way? That is the problem to be dis-
cussed in this lecture. Throughout p denotes a prime number that is ! mod 4.
DAVENPORT, in [5, Chapter V, Section 31, gives four methods of con-
structing x and y. Before we analyze their efficiency let us set ourselves
a standard by first considering the trivial method. If we assume x > y then
/575 < x < /p, so it suffices to test, for each x in this range, whether
p-x2 is a square. This takes time 0(p(1/2)+8) for any e > 0, the p® account-
ing for the arithmetic that must be done for each x; see Turk's lecture for
a more precise analysis of the cost of arithmetic operations.
One of Davenport's constructions, due to Jacobsthal, is as follows. Let

(g) denote the Legendre symbol, and choose a,b € Z with (g) =1, (%9 = -],

Then the integers
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satisfy x2 + y2 = p. This can be proved by relating x and y to the number

of solutions of each of the comgruences
- .3

u” = v’ -avmodop,
= 3

u” = v7 -bvmodp,

see [6, Chapter 18, Theorem 5]. Using this construction for x and y in a
straightforward way leads to an O(p1+€)—algorithm, much slower than our
standard.

Davenport's second construction is obtained by putting a = -1 in the

above formula. Writing p = 4k+ 1 and using that

RICEIV I

> (n3 +n) 2k mod p,

p-1 i {Omodp if i £ O mod p-!

-lmodp 1if i = Omodp-1

one readily finds that

1

2k
xE—i(k)mMp,

as was first proved by Gauss. Together with |x| < %.p this suffices to det—
ermine x and hence y. Calculating (i&)modp in the trivial way we arrive
again at an O(p]+E)-a1gorithm. Using the technique described in Section &
of Pomerance's paper we can reduce this to O(p(]/2)+€), exactly our standard
but much slower in practice. At the end of the author's lecture on primality
testing it will be seen that there is a much faster way to calculate (%f)
mod p if arithmetic operations on ordinary integers are assumed to be doable
in unit time. But the size of the numbers that appear is such that this is
a very unrealistic assumption; in the terminology of the lecture by
Van Emde Boas we are using the wrong machine model.

The third method that we discuss is basically due to Legendre.
Davenport formulates it in terms of continued fractions, but here we shall

use quadratic forms. Define two sequences of integers aO’al""’bO’bl""



as follows:

ay = 1,

b0 = greatest odd integer < vp,

a = ®2-p)/(a)

n+l n n’’

b, = bymod2a ., /p - lZan+]} <b ., < vp.
For some n it will happen that a1 T T3 and then we have (2an)2-+bi = p.
For example, for p = 73 we have

n o 1 2 3 5

a: 1 -6 2 =3 4 -4

n

b: 7 5 7 5 3

From Schoof's lecture it will be clear that the forms Fn = anX2 + anY +

a Y2 are precisely the binary quadratic forms of discriminant p in the

n+1
principal cyele. It can be shown that the length £ of this cycle is 2mod 4,
and that apy; = -a  occurs first for n = (£-2)/4. The known estimate

(]/2)+€)—a1gorithm.But

£==O(p(1/2)+€) thus implies that this is again an O(p
Shanks' technique of jumping through the principal cycle, explained by

Schoof, improves this significantly: the desired form F(K—Z)/4 can be found
in time O(p(l/4)+6), and if the generalized Riemann hypothesis is assumed
even in time 0(p(1/5)+€). In several other contributions we shall encounter
algorithms in which the Riemann hypothesis plays a role. In the paper of

Brent et al. attention is paid to numerical techniques related to the

Riemann hypothesis.

The sequences (an), (bn) defined above can also be used to solve the
Pell equation
x - py2 = -4,

More general equations such as

n m
ax + by =¢



are considered, from different angles, in the contribution of Stroeker and
Tijdeman.

In Schoof's lecture it is explained how binary quadratic forms can be
used to determine the class number and the units of a quadratic field. In
the lectures by Brentjes and Zantema the same questions are considered for
number fields of higher degree.

The fourth method discussed by Davenport is due to Serret, and again
we give a slightly different formulation, as in [3]. If p = x2+y2 then
u = xy—l (division mod p) satisfies u2 z -lmodp, and up to sign it is the
only such integer modulo p. Suppose now that, conversely, an integer u is
given such that u2 = -lmod p. We claim that it is easy to recover x and y.
One method to do this is by calculating the greatest common divisor of p and
u+i in the ring Z [i] of Gaussian integers. This can be done by means of

the Euclidean algorithm, which is valid in this ring, and the result is
ged(p,utl) = x+vyi

where x,y € Z are such that xz-fyz = p,

The second method to recover x and y from u employs the Euclidean algo-
rithm only for ordinary integers. It proceeds as follows. Calculate the ged
of p and u by means of the ordinary Euclidean algorithm, until two consecu-
tive remainders are less than /p; then these can be taken as x and y. Exam—

2
ple: for p = 73 we have u” = ~lmodp for u = 27, and the sequence of succes-

sive remainders is
73,27,19,8,3,...

so that we can take x = 8, y = 3. The proof of the correctness of this algo-

rithm depends on the symmetry appearing in the sequence of congruences

0.27 = 73mod 73
1.27 = 27mod 73
~2.27 = 19mod 73
3.27 = 8mod73
~8.27 = 3mod 73
19.27 = 2mod 73
~27.27 = 1mod 73
73.27 = Omod 73.




This symmetry is caused by the next-to-last congruence -u.u = 1 mod p.

This conmstruction of x and y has a geometric interpretation: the pair
(x,y) is a "short" vector in the two-dimensional lattice {(v,w) ¢ Z x 7:

v = uwmod p}. For a method to find short vectors in higher dimensional lat-
tices and an application to computational number theory we refer to [7]. The
subject is closely related to diophantine approximation, as discussed in
Brentjes' lecture.

How fast is the above method to comstruct x and y? The Euclidean algo~
rithm takes time 0((log p)z), or in a faster version [8] only 0(logp
(1oglogp)2 logloglogp). But to this the time needed to find u should be
added.

This leads to the gquestion how the equation u2 = ~lmod p can be solved.
For the prime divisor p = 1238926361552897 of 2284-1 we can clearly take
u = 227, and from this the values for x and y stated at the beginning can be

easily computed. For general p we can take u = C%(p—l))!, but this formula

is useless for computational purposes.

A.K. Lenstra discusses in his lecture a method to find zeros of poly-
nomials over finite fields. Applying this to the polynomial Xz-kl over the
field Z/pZ we obtain a solution for our problem that is quite efficient in

practice, but for which it is difficult to estimate the time needed in a

satisfactory way.
The following method has a similar problem. Let b be the least positive

integer with éb = —13 then b(p_])/2 = ~lmod p, so we can take

u = b(P_])/Armxip. Using the reciprocity law for the Jacobi symbol one can
calculate GE) in time O((log p)z), for 0 < n < p; perhaps this can be im—
proved with the techniques of [8]. Further, b(pnl)/Qmodp can be calculated
in time 0((log p)2+E). Hence u can be determined in time O(b(log p)2 +

(log p)2+€); here we have b = O(pll(4¢;)+€) (see [4]), and if the truth of
the generalized Riemann hypothesis is assumed then b = 0((log p)z) (see [1D).

We conclude that Serret's method to solve p = x -Fyz takes time
0(p]/(4¢E)+E), where 1/(4ve) = 0.15163..., and 0((log p)4) if the general-
ized Riemann hypothesis is true.

An improvement of theoretical value was recently obtained by SCHOOF

[9], who showed without any unproved assumption that p = x -+y2 can be

solved in time O((log p)6). His algorithm makes use of the elliptic curve
2 . . . .

u = v3-‘v (over Z/pZ) that we mentioned in conmection with Jacobsthal's
construction. It proceeds by investigating the action of the "Frobenius

automorphism" on the £-torsion points of the curve, for several small primes £.



It may be expected that Schoof's algorithm is only the first of many

applications of arithmetical algebraic geometry to computational number

theory.
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