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ARTICLE INFO ABSTRACT

The UN's 17 Sustainable Development Goals (SDGs) aim to improve the lives of people, increase prosperity, and
protect the planet. Given the large number of goals, interactions are inevitable. We analyse the interaction
between two social goals (related to SDG1 Poverty and SDG10 Inequality) and three environmental goals (re-
lated to SDG13 Carbon, SDG15 Land, and SDG6 Water). We use a trade-linked, consumption-based approach to
assess interactions in 166 nations, each subdivided into four income groups. We find that pursuing social goals is,
generally, associated with higher environmental impacts. However, interactions differ greatly among countries
and depend on the specific goals. In both interactions, carbon experiences smaller changes than land and water.
Although efforts by high- and low-income groups are needed, the rich have a greater leverage to reduce
humanity’s footprints. Given the importance of both social and environmental sustainability, it is crucial that
quantitative interactions between SDGs be well understood so that, where needed, integrative policies can be
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developed.

1. Introduction

In response to increasing concern about the long-term sustainability
of human societies, the United Nations developed the Sustainable
Development Goals (SDGs), a 2030 agenda including 17 goals and 169
targets (United Nations, 2016). Despite criticisms of the framework
(Kopnina, 2015), these goals currently dominate the sustainability and
policy discussions surrounding development. Some initial progress to-
wards the SDGs was achieved, but our understanding of interactions
between SDGs remains limited (Allen et al., 2018). With such a plethora
of goals and targets, interaction is inevitable. Possible interactions
range from cancellation (achievement of an SDG makes progress on
another impossible) to indivisibility (success in an SDG is contingent on
success of another) (Nilsson et al., 2016). Correlations between SDGs
mostly point towards synergies, but also indicate trade-offs (Pradhan
et al., 2017). For some SDGs these interactions are clear, while others
are opaque. For example, the environmental impact of increasing
equality across income groups could be positive or negative (Rao and
Min, 2018). The magnitude of interaction effects is also critical. Al-
though one can assume that increasing incomes above extreme poverty
will increase environmental pressures, the magnitude and location of

these impacts caused by the global economy are rarely investigated
(Hubacek et al., 2017). Given the importance of these goals and their
short time horizon, it is critical that policy makers receive relevant and
timely information to facilitate potential mitigation or adaptation po-
licies on SDG trade-offs.

Here we quantitatively assess the environmental impacts of ending
poverty (related to SDG 1: no poverty), and reducing inequality (related
to SDG 10: reduced inequalities). Our choice of social SDGs is motivated
by previous findings that individual consumption is the most significant
driver of environmental pressures, rather than population (Bradshaw
et al., 2010). Furthermore, since poverty and inequality are reflected in
consumption volumes (Aguiar and Bils, 2015), any developments sug-
gest concomitant changes in environmental impacts among income
groups.

The majority of environmental impacts can be attributed both di-
rectly and indirectly (through supply chains) to the consumption by
households (Ivanova et al., 2016). Household consumption is a key
indicator of wealth and poverty within the SDG framework. Previous
work on the environmental impact of household consumption has
generally focused solely on a single country or region and a single
footprint (Lépez et al., 2017; Sommer and Kratena, 2017; Wiedenhofer
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et al., 2017). Cross-country analyses rarely distinguish income levels
(Ivanova et al., 2016), or are limited to one interaction with the en-
vironment (Hubacek et al., 2017). In this work, we quantify the effect of
reducing extreme poverty and inequality on environmental impacts. We
estimate country-specific effects for 166 nations of the world (Fig. Al),
covering 6.84 billion people (99% of the total population; UN, 2017).
We choose three environmental footprint categories corresponding to
carbon (CO,-equivalents, related to SDG 13: climate action), land (land
stress, related to SDG 15: life on land), and water (freshwater scarcity,
related to SDG 6: clean water and sanitation). Water and land, as our
most vital resources, are scarce (Lambin and Meyfroidt, 2011; Scherer
and Pfister, 2016a), and global temperature rise is still accelerating
(Smith et al., 2015), which highlights the importance of these three
environmental categories.

To perform the analysis, we link the Global Consumption Database
of the World Bank (World Bank, 2017c) to EXIOBASE (Stadler et al.,
2018). In EXIOBASE, international trade links the production and
consumption of countries. This approach is essential, as 20-37% of
environmental impacts are related to production for exports (Lenzen
et al., 2012; Wiedmann, 2016). Our year of reference is 2010. As the
magnitude and pattern of expenditure differs among income groups
(see Figs. A2 and A3), we investigate trends within four different in-
come groups.

2. Methods
2.1. Household expenditures

Fig. A4 shows the conceptual framework of the main analysis. The
World Bank distinguishes four income groups for household ex-
penditures of 106 products and services in 91 countries in 2010 (World
Bank, 2017c). The income groups use international dollars, considering
the purchasing power parity, and are split by absolute monetary
boundaries: lowest <= $2.97, low = $2.97-8.44, middle =
$8.44-23.03, and higher = $23.03 per capita per day. Per-capita ex-
penditures are multiplied with the population of each income group to
obtain total expenditures per income group. To link the World Bank
database to EXIOBASE, the expenditures are reclassified to the 200
products and services of EXIOBASE. First, a concordance matrix (C) is
built, which indicates if a class from the World Bank is (partially)
contained in a class of EXIOBASE (1) or not (0). Second, a bridge matrix
(B) is estimated that translates the classes from one system to the other:

b & a0 = Bo™*f;

where f, is the total expenditures or final demand vector from the
World Bank and f; is the total final demand vector in the classification
of EXIOBASE. The index of 100 indicates the maximum number of
iterations during which B is estimated. A first guess of B (B;) is derived
from C with the additional information about the distribution of total
expenditures among the EXIOBASE classes (d;), a vector whose sum
equals 1:

B = (C'dy) 1+ Cod,

where the hat (") denotes a diagonal matrix of a vector. Subsequently, B
is iteratively updated to further harmonise the two classification sys-
tems using a variant of the RAS algorithm (Stone, 1961):

By = fieA;*§;
where
Ai = fi 'Bi

5= h0ds; = O, /(T A1)

n= 0k, = fOA§ 1)
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where @ is Hadamard (element-wise) division and T is a column vector
of 1’s. B is calibrated without distinguishing income groups in either
classification, and then applied to reclassify the World Bank’s detailed
expenditures to EXIOBASE’s product system.

We estimate expenditures per income group for additional 74
countries (24% of the analysed population but 82% of the expenditures)
by assuming a lognormal distribution of incomes (Bilkova and Mala,
2012; Easterly, 2009). The income Gini index (Central Intelligence
Agency, 2017; World Bank, 2017b) (G) allows to calculate the standard
deviation (o) of that distribution (Bilkova and Mala, 2012):

o = 2«erf"1(G)

where erf~! is the inverse error function. The Lorenz curve with the
resulting standard deviation, calculated with the function “Lc.lognorm”
in R package “ineq” (Zeileis, 2014), provides the cumulative income
shares. Income shares are then multiplied with the mean per-capita
expenditures (World Bank, 2017d) and a sample population of 10,000
to get individual incomes, which are subsequently split into income
groups at a precision of 2 decimal percentages. Since the income
boundaries are expressed in international dollars, but expenditures in
US dollars, we multiply the thresholds with the country’s price level
ratio (World Bank, 2017e). Gaps in expenditures are first filled with
estimates from a linear regression with the country’s GDP (World Bank,
2017a) (adjusted R? = 0.89). Remaining gaps in income Gini indices
and expenditures are filled with values from nearby countries. Popu-
lation data is obtained from the United Nations (UN, 2017). EXIOBASE
provides expenditure patterns for 32 of the additional countries without
differentiating incomes (Tukker et al., 2013; Wood et al., 2015). In
contrast to countries covered by the Global Consumption Database,
expenditure patterns of countries covered by EXIOBASE are assumed
not to differ among income groups. For the remaining 43 countries (9%
of the analysed population), the expenditure patterns are assumed to be
equal to nearby countries. Which countries follow which approach is
listed in Appendix B.

To validate our approach of using the Gini index to derive income
contributions of EXIOBASE countries, we compare our estimates of
income quintiles with the income quintiles given in the World Bank’s
Development Indicator Database. The estimates and reference values
are provided in Appendix C, along with the Pearson correlation coef-
ficients for a total of 40 countries for which the required data is
available in the year 2010. The correlation coefficient ranges from
0.9965 to 0.9999, demonstrating the robustness of our method.

For visualization and interpretation, products are aggregated to
seven consumption categories. 1) Food includes plant-based and animal
products as well as restaurant services. 2) Housing includes real estate
services, forestry and wood products, construction materials, water,
and waste. 3) Energy includes electricity, housing fuels, and hot water.
4) Transport includes vehicles, transport services, and transportation
fuels. 5) Clothing includes wearing apparel, furs, and products from
wool, textile, and leather. 6) Manufactured goods include machinery,
equipment, and other manufactured goods. 7) Services include educa-
tion, health, recreational, and other services.

2.2. Environmentally extended multi-regional input-output analysis

We use the product-by-product version 3.4 of EXIOBASE (Stadler
et al., 2018) based on the industry technology assumption for en-
vironmentally extended multi-regional input-output analyses (EE-
MRIO). It allows to connect national consumption to production any-
where in the world, and covers 200 product groups per country and 49
countries or regions. The impacts of a country’s consumption sourcing
products from different locations are then evaluated by:

H = Q+B+(I-~A)"F + D

where H is the impact matrix with income groups as columns. Q is the
characterization matrix that describes the impacts per unit of emission
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or resource. B is the satellite matrix that describes the emissions and
resources per product unit. (I—A)~! is the Leontief inverse that expresses
the total requirements per product unit for each product and A is the
structural matrix of the economy, which is essential for input-output
analyses (Tukker et al., 2013; Wood et al., 2015). F is the final demand
disaggregated into income groups and consumption categories. Finally,
D represents the direct household impacts disaggregated into income
groups.

Direct emissions and resource uses are allocated to the income
groups based on the final demand of associated products. Greenhouse
gas emissions are allocated based on expenditure shares of 44 fuels, the
total energy use (TJ) of each fuel (from EXIOBASE v3.3, as the energy
extension is aggregated in v3.4), and the CO, emission intensity of
those fuels (from IPCC’s emission factor database; IPCC, 2018). Land
use is allocated based on “real estate services”, and water consumption
based on “collected and purified water, distribution services of water”
and “steam and hot water supply services”. When these products
amount to zero in the final demand, the total expenditure is used for
allocation instead. This concerns Tajikistan for land use, and Honduras,
Iceland, India, Ireland, and Papua New Guinea for water consumption.

We characterize the environmental impacts of three impact cate-
gories — climate change, land use, and water consumption — using a
linearized model through matrix Q above. Climate change impacts are
assessed by greenhouse gas emissions (GHG) and their global warming
potentials (GWP) at a 100-year time horizon (IPCC; Myhre et al., 2013)
to characterize the impacts of those emissions. Considered gases include
CO,, CHy4, N>O, SF¢, HFCs, and PFCs. The impacts are aggregated to a
carbon footprint (CF) expressed in kg CO,-equivalents.

CF = GHG-GWP

Land use and water consumption are also weighted, as non-
weighted resource use does not always align with the consequences of
that use (Font Vivanco et al., 2017). Land use (LU) includes agricultural
and forest land, which is converted to a land footprint (LF) in km>-
equivalents using land stress indices (LSI; Pfister et al., 2011). These
stress indices are the ratio of the site-specific net primary productivity
of the natural reference vegetation (NPPy; Haberl et al., 2007) to the
global maximum (NPPg o). It implies that using land with a higher
NPP, causes more damage, as NPP, positively influences biodiversity
and the provision of ecosystem services (Haberl et al., 2007).

NPP,

PPO,max

LF = LU-LSI = LU-

Water consumption (WC) focuses on surface and groundwater (blue
water). We do not take into account soil moisture (green water), as the
two types of water are not directly comparable. Green water can only
be consumed by the vegetation that occupies land and cannot be used
for other purposes, which might lead to double counting with land use
impacts. In addition, natural vegetation would also have consumed
green water, and the net change might even be positive (Pfister et al.,
2017). Blue water consumption is translated to water scarcity footprints
(WF) in million m>-equivalents using the average of two water scarcity
index (WSI) estimates (Pfister and Bayer, 2014; Scherer and Pfister,
2016a). Water scarcity indices are derived from the water consumption-
to-availability ratio (CTA) and scaled to a 0-to-1 range using a logistic
function.

WF = WCWSI = WCsf (CTA)

Both land stress and water scarcity indices are available as global
rasters and aggregated to country averages by overlaying the rasters
with country boundaries (Hijmans et al., 2014). Since the weighted
land use and water consumption metrics are not as familiar as the
carbon footprint, we perform a sensitivity analysis (Appendix A, Fig.
Ab5).

67

Environmental Science and Policy 90 (2018) 65-72

2.3. Inequality in footprints

We have used Gini indices (G) above to split the population of some
countries into income groups. Like in previous studies where Gini in-
dices have already been applied to environmental inequality, especially
carbon footprints (Steinberger et al., 2010; Teixidé-Figueras et al.,
2016; Teng et al., 2011; Wiedenhofer et al., 2017), we follow Teng and
colleagues (Teng et al., 2011) to derive environmental Gini indices from
the Lorenz curve. The Lorenz curve displays the cumulative impact
shares against the cumulative population shares, sorted so that the
impact per capita is ascending. The 45-degree line marks perfect
equality. The Gini index is defined as the ratio of the area between the
equality line and the Lorenz curve to the total area below the equality
line. Since the total area below the line is 0.5, the equation can be
reformulated based on the area below the Lorenz curve (A;):

G =1-2-4,

A value of 0 represents perfect equality with all people having the
same footprint and a value of 1 represents the highest inequality with
one person among many being responsible for the total footprint of all.
Aj is approximated by the sum of the trapezoidal areas. Since trape-
zoids overestimate A;, especially with small sample sizes (n = 4), and,
as such, underestimate G, we reduce the bias by calculating an adjusted
Gini index (G,qj; Deltas, 2003):

n
Gagj =
i n—

G
1

As an alternative measure of inequality, we also calculate the
coefficient of variation, i.e. the ratio of the standard deviation to the
mean. The measure does not have an upper limit, i.e. it can exceed 1.
While the Gini index is more sensitive to the centre of the distribution
than its extremes, the coefficient of variation is neutral in terms of the
distribution (Duro, 2012).

2.4. Scenario analysis

We explore two scenarios related to the social SDGs 1 (no poverty)
and 10 (reduced inequality) of the United Nations (2016). In the first
scenario, extreme poverty is eliminated and we allow expenditure of
those concerned to increase to 1.25 international dollars per capita and
day. While a previous study considered average incomes of the lowest
income group for a similar scenario (Hubacek et al., 2017), we ex-
plicitly analyse how many people of the lowest income group live in
extreme poverty. The population of each country that lives in extreme
poverty and their average expenditure is estimated in the same way as
the income groups have been split, by using the Gini index of income.
The price levels of the countries contained in the World Bank’s database
are derived from expenditures given in both US and international dol-
lars. Subsequently, country-specific impacts of the lowest income group
are increased by the same factor as the expenditure increases.

In the second scenario, inequality is reduced by limiting the Gini
index of income or expenditure to a maximum of 0.3, slightly less than
the median or half the maximum. The original Gini indices of countries
contained in the World Bank’s database are estimated in the same way
as the Gini indices of footprints have been estimated. After modifying
the Gini indices of income or expenditure, new population and ex-
penditure distributions are estimated for all countries, while total ex-
penditures are maintained at the original level. Similar to the previous
scenario, country-specific impacts of all income groups are changed by
the same factor as the expenditure changes.

We apply these scenarios to the year of analysis, 2010, and do not
project into the future. On the one hand, some argue for a delay in
environmental impact mitigation due to inequalities among present and
future generations. They discount future generations and because fu-
ture generations are on average richer they can easier afford mitigation
costs (Budolfson et al., 2017). On the other hand, others argue for fast
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environmental impact mitigation due to high inequalities within our
present generation. The poor disproportionately suffer from environ-
mental damages and if the rich assume a greater responsibility in
bearing the costs, the poor of today, the ones most in need, will benefit
(Budolfson et al., 2017). We follow the latter argumentation that we
need to act now or should already have started acting back in 2010 and,
therefore, keep our scenarios in that year. This also avoids increasing
the uncertainties from extrapolation into the future.

As a sensitivity analysis, we also explore modified versions of the
above scenarios. First, we assume a higher international poverty line of
$1.90 per capita and day, according to an update by the World Bank
(Ferreira et al., 2016). Second, we halve the Gini index of income of all
countries.

We further explore mitigation efforts. To meet the 2°C climate
target, the carbon footprint must be halved from 1990 to 2050
(Meinshausen et al., 2009). For water, a similarly ambitious target was
suggested, which implies halving the water footprint (Scherer and
Pfister, 2016a), while for land, the Aichi target 15 of the Convention on
Biological Diversity (2010) demands to restore at least 15% of degraded
ecosystems. Based on these global targets, we aim to reduce the water,
land, and carbon footprints of households by 50, 15, and 50%. We
identify universal footprint caps without increasing the footprints of
those still below the thresholds after eliminating extreme poverty. The
required reduction of each income group is then derived from the ratio
of the footprint cap to the current footprint without extreme poverty.

2.5. Limitations of the study

While EXIOBASE relies on top-down estimates of the national con-
sumption, the detailed Global Consumption Database is based on sur-
veys of a sample of the total population. Therefore, the total con-
sumption and the consumption patterns in EXIOBASE and the World
Bank’s Global Consumption Database do not always match well. For
this work, we assumed that the survey data is more accurate than the
top-down estimates.

Extreme incomes of the extremely poor and the super-rich might be
associated with extreme lifestyles such as illegal deforestation
(Tollefson, 2015) and the use of private jets (Datta, 2013), and severe
environmental impacts. Those extremes are not well represented by the
homogeneous product categories available in EXIOBASE.

While the impact inequalities are large, it should be noted that we
might even underestimate them. Investments made by households are
not included in the household expenditures (Ivanova et al., 2016).
These are expected to be proportionally higher in higher income
groups. Besides, infrastructure capital, such as roads enabling transport,
are not considered in household expenditures (Ivanova et al., 2016) and
are also expected to be proportionally more used by higher income
groups. In contrast, the analysis assumes that members from all income
groups buy products with the same impacts per unit expenditure, while
higher expenditures within a product category might be due to higher
prices for the same physical amount, and this same amount might even
be more sustainable, e.g. due to higher efficiencies. Therefore, an
overestimation of the impact inequality is also possible. These un-
certainties in impact inequality similarly affect the scenarios of poverty
alleviation and income redistribution for an income inequality reduc-
tion.

We measure inequality by two indices to increase robustness;
however, only the Gini index is used in the scenario related to SDG 10
and the reduction of inequality. We have already mentioned that the
Gini index is more sensitive to the centre of the distribution than its
extremes. Alternative measures, such as the Theil and Atkinson family
of indices, are more sensitive to the bottom of the distribution, and are
also valuable or even preferable in inequality studies (Duro, 2012).
Still, the Gini index is the most commonly used measure and, therefore,
allows for greater comparability across studies.

While each SDG is subdivided into several targets, we represent
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each goal with only one indicator. We believe that our quantitative
study of these key indicators at a global, economy-wide scale is very
valuable.

Another limitation of our study is the unchanged structure of the
economy and associated environmental intensities. In reality, these
might change after successful implementation of the SDGs. For an ex-
ample of scenario-based analyses within the input-output framework,
see de Koning et al. (2015) who considered such changes.

3. Results and discussion
3.1. Global inequality and environmental impacts

The food sector dominates footprints of all income groups. Globally,
it comprises 28% of households’ carbon footprint. Within the food ca-
tegory, the major contributions to the carbon footprint come from cattle
and rice. The second largest sector is energy use (19%), especially
electricity from coal, followed by direct household emissions (16%).
Food also dominates the land footprint (43%), followed by direct land
use (32%). In the lowest income group, the shares differ significantly
from those across income groups (55% for food and 20% for direct land
use). Food alone is responsible for 73-92% of the water footprint.

The lowest income group represents 45% of the population (three
billion people), but is associated with an estimated 10, 14, and 30% of
household’s carbon, land, and water footprints (Fig. 1, Table Al). In
contrast, the higher income group (17% of the population) cause an
estimated 57, 42, and 32% of household’s carbon, land, and water
footprints (Fig. 1, Table Al). Differences in footprints between income
groups are higher for carbon than they are for land and water. This is
driven by the increase in high-carbon, low-water, and low-land in-
tensive activities (such as transportation) as people move to higher
incomes; and further accentuated by low increases of food spending
(which dominate water and land use) from low to high incomes. Hence,
high-income groups shift their consumption from necessities to luxuries
(Aguiar and Bils, 2015).

We examine these differences further using the Gini index (Teng
et al., 2011). Globally, we find Gini indices of 0.71, 0.57, and 0.28 for
carbon, land, and water footprints (Fig. 2). The coefficient of variation,
an alternative measure of inequality, shows a similar trend with values
of 0.75, 0.41, and 0.27 (Table A2). Teixid6-Figueras et al. (2016) also
find that carbon footprints show a higher inequality than other en-
vironmental impacts. When moving to higher income groups, the con-
sumption of high-impact products generally increases at a slower rate
than lower-impact products (e.g. services). Generally, as incomes in-
crease, the impacts per dollar decrease (Sommer and Kratena, 2017).
Consequently, income redistribution increases footprints on average
(Lopez et al., 2017).

When distinguishing nations and income groups, footprint in-
equalities can change significantly. The water footprint shows the
biggest change, with the Gini index increasing from 0.28 to 0.45 and
the coefficient of variation from 0.27 to 5.52 (Table A2, Fig. A6). This

Population lﬁ Bm Lowest
Water |
Em Middle
Land [ T B Higher
Carbon [T

100% 50% 0% 50% 100%

Fig. 1. Share of population and environmental footprints for consumers of
different income groups. The left and right sides of zero contrast the lowest with
the other income groups. The carbon footprint measures greenhouse gas
emissions, the land footprint measures land stress, and the water footprint
measures freshwater scarcity. The income groups are split by absolute monetary
boundaries in international dollars: lowest < $2.97, low = $2.97-8.44,
middle = $8.44-23.03, and higher = $23.03 per capita per day.
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Fig. 2. Lorenz curves and Gini indices for carbon, land, and water footprints of
household consumption. The carbon footprint measures greenhouse gas emis-
sions, the land footprint measures land stress, and the water footprint measures
freshwater scarcity. The dotted line marks the equality line at which the Gini
index would be 0. The dot-shaped markers on the solid lines indicate the po-
sition of the four income groups (the last being at coordinates (1,1)).

emphasises the significance of location, and the need for spatially ex-
plicit water scarcity assessments (Behrens et al., 2017; Scherer and
Pfister, 2016a). Environmental Gini indices within countries are espe-
cially high in Brazil (0.47-0.57) and Botswana (0.59-0.73), whereas
they are low in higher-income countries, such as the United States
(< 0.1) (Fig. A7, Appendix D). This further highlights the importance of
spatially explicit analyses for examining the trade-offs and synergies
between SDGs.

Environmentally intensive international trade exacerbates these
trends among income groups. Most rich countries are net importers, and
often source their products from poorer countries, thereby benefiting
from the environmental burdens felt elsewhere (Scherer and Pfister,
2016Db). In addition, environmentally intensive trade limits the poten-
tial of rich countries, where most of the rich people are living, to reduce
their footprints through technological advances (Ivanova et al., 2016).

3.2. Interactions of Sustainable Development Goals

The detailed, global dataset allows to investigate the country-spe-
cific environmental impacts of changes in the minimum income level
and national inequality by either increasing the expenditure of the
lowest income group or by redistributing income across income groups.
The imposition of a minimum income level of $1.25 per capita per day
(SDG 1) for the extremely poor (Fig. A8) leads to a limited increase in
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environmental impacts (Fig. 3). Carbon footprints show the lowest in-
crease, 0.8% on average (0.21 Gt CO,-equivalents globally), while land
and water footprints increase by 1.4 and 2.1% (420,000 km>-equiva-
lents and 10 billion m®-equivalents). These increases are higher than
the increase in average expenditure by 0.3%. As may be expected, in-
creases are greater in nations with a low human development index
(HDI) (13%), with several extreme outliers, including Burundi
(52-54%), Madagascar (73-77%), and the Democratic Republic of the
Congo (83-85%) (Fig. A9, Appendix E). This is driven by the ex-
ceptionally low level of income in these nations. Raising the interna-
tional poverty line to $1.90 a day, as recently suggested (Ferreira et al.,
2016), increases carbon, land, and water footprints by 1.9, 3.3, and
5.6% (Fig. A10). This compares to a carbon footprint increase of 2.8%
found in other work (Hubacek et al., 2017). The effects might even be
larger today, as the population of low-income countries grows faster
than that of high-income countries (World Bank, 2018).

The environmental impacts of reducing intra-national inequality
(SDG 10) by limiting the Gini index of income to a maximum of 0.3
show significantly more heterogeneity than those for the elimination of
extreme poverty (Fig. 4). As before, carbon footprints show the lowest
increase in impacts on average (0.8% at the global level), followed by
land and water (0.9 and 1.3%). Previous findings confirm that reduced
intra-national inequality may increase greenhouse gas emissions, while
they also suggest possible improvements when reducing international
inequality (Rao and Min, 2018). We find diverging relationships across
development stages and impact categories. For example, the environ-
mental impacts in South Africa increase by 7-11%, while in Saudi
Arabia they reduce by 2-8% (Fig. Al1). In a country with a relatively
small number of rich persons like South Africa, redistribution of income
to poorer groups results in a significant reduction of wealth in the richer
groups. This results in a net increase in environmental impacts, since
lower income groups have higher impacts per dollar as income in-
creases. In contrast, in a rich country like Saudi Arabia, income redis-
tribution means that the smaller number of poorer individuals climb to
higher expenditure groups with lower impacts per dollar. This has a
limited impact on the status of the upper expenditure groups.

There are also diverging relationships in footprint impacts within
nations (Appendix E). For instance, in Niger the carbon footprint de-
creases (-1%), but the land and water footprints increase (1 and 9%).
Likewise, in India the land footprint decreases (-1%), but the carbon
and water footprint increase (3 and 5%). Reducing intra-national in-
equality more by halving the Gini index of all countries increases
carbon, land, and water footprints globally by 1.7, 1.8, and 5.7% (Fig.
A12).

EHigh HDI & Medium HDI

CLlow HDI

Fig. 3. Environmental impacts of meeting a
minimum income of $1.25 a day (SDG 1).
Countries are grouped by the human develop-
ment index (HDI, low: < 0.55, medium:
0.55-0.7, high: > 0.7). Exp. stands for ex-
penditure. The boxes range from the first to the
third quartile, with the band inside indicating
the median. Its whiskers extend to the extreme
values. The crosses mark the population-
weighted average.
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Fig. 4. Environmental impacts of reducing in-
e Hesans '_‘_‘l;_ljx“‘:_‘_‘_‘_‘:'___4 IU% equality (SDG 10, here: limiting the income
® DE @ Gini index to a maximum of 0.3). Countries are
= e e 2 grouped by the human development index
| (HDI). The boxes range from the first to the
At le----------- = third quartile, with the band inside indicating
k= F---XI-------- 1 the median. Its whiskers extend to the extreme
E 3 SR R R l-------1 values. The crosses mark the population-
I weighted average. Countries with assumed
constant expenditure patterns are excluded in
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3.3. Efforts needed Implementing the SDGs also requires collaboration across countries
(Stafford-Smith et al., 2017). The results showed that, while low-in-
Today’s challenge to reduce humanity’s environmental footprint is come nations require more attention to social goals, high-income na-
set to become harder, with increasing population and economic growth tions play a key role to improve environmental sustainability. The
in many regions of the world. Since many countries, including India and United Nations can take on a mediating role between those countries.
China as the most populous countries, are still in early and middle
stages of development, their growth is expected to continue accel- 4. Conclusions
erating for decades (Modis, 2013). The development of poorer countries
is desired to alleviate poverty and achieve social equity, but it increases The increased impacts per unit of expenditure at lower incomes
their environmental impacts. There is a clear role for high-income point to the challenge to achieve both social and environmental sus-
households and countries to take the lead to reduce humanity’s foot- tainability. Poverty alleviation (SDG 1) allows low-income countries
print (Chakravarty et al., 2009; Mont and Plepys, 2008). and groups to approach the development stage of those with higher
We explore which efforts the different income groups need to put incomes. Likewise, a reduction in inequality (SDG 10) reduces the gap
into reaching universal footprint caps. In line with international targets between the poor and the rich. At the same time, environmental foot-
(Convention on Biological Diversity, 2010; Meinshausen et al., 2009; prints must be reduced in line with other SDGs. However, countries’
Scherer and Pfister, 2016a), we reduce the water, land, and carbon strategies are often imbalanced between social and environmental
footprints of households at the global level by 50, 15, and 50%, re- priorities (Schmidt-Traub et al., 2017). O’Neill et al. (2018) show that
spectively, while eliminating extreme poverty. Consequently, the foot- meeting basic human needs is likely to transgress planetary boundaries
prints of the lowest income group rise, while high-income groups have of resource use. All this highlights the size of the challenge to find an
to put even more effort into reducing their footprints (Fig. 5). Even if environmentally safe and socially just operating space for humanity
low footprints are not increased beyond the elimination of extreme (O’Neill et al., 2018).
poverty, a uniform footprint cap requires an estimated reduction of up The mapping of trade-offs and synergies between different devel-
to 77% for the carbon footprint of the higher income group. However, opment goals will become increasingly important as policy im-
even the lowest income group would have to reduce its water footprint plementation accelerates. According to previous categorisations of SDG
by about a quarter due to the higher equality for water among income interactions (Nilsson et al., 2016), the interactions investigated here
groups. Efforts by both high- and low-income groups are needed, but would be overall mostly counteracting. As such, the interactions
the rich have a greater leverage to reduce humanity’s footprints. weaken the effectiveness of their implementation (Allen et al., 2018).
However, interactions are highly heterogeneous in both location and
3.4. Policy implications impact type, highlighting the importance of quantitative assessments
and specific locational responses (Pradhan et al., 2017; Yonehara et al.,
The interactions between social and environmental SDGs point to 2017). This work provides important information to policy makers on
the importance of designing policies across sectors and actors (Stafford- the location and magnitude of necessary, additional efforts for en-
Smith et al., 2017). Such integrative policies can help converting trade- vironmental SDGs, if progress towards social SDGs are to be achieved.
offs into synergies. The results from this study show where trade-offs Further quantitative mapping of other interactions will be necessary to
are high, and where therefore additional efforts as well as multi-sectoral explicitly reveal the implicit trade-offs, synergies, and challenges posed
and multi-actor collaboration are required. by making progress towards multiple SDGs.
Since SDG interactions vary by country, it is essential to consider the
specific context of a country when designing policies for sustainable Data statement
development (Pradhan et al., 2017; Yonehara et al., 2017). The trade-
offs presented in this study provide first insights into this context. The major underlying data sources are all publicly available:
T T Fig. 5. Estimated reduction requirements in water, land, and
Higher O——= : O Water cafbon footprints (displayed ;ls negative numbers) to meet
Middle o O 8 g (L:aar:tc)ion environmental targets, while allowing the lom.rest income
; group to get out of extreme poverty and to increase ex-
Low o— penditures and associated impacts (displayed as positive
numbers).
Lowest o—
1
-100% -50% 0% 50%
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EXIOBASE v3.4 (https://www.exiobase.eu/index.php/data-download/
exiobase3), the World Bank’s Global Consumption Database (http://
datatopics.worldbank.org/consumption/detail), and the World Bank’s
Development Indicator Database (https://data.worldbank.org/). Data
that support the findings of this study - including population, ex-
penditure, footprints, and Gini indices of all countries and income
groups — are available within the paper and its supporting information
files.
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